23 research outputs found

    Advances in the Electrochemical Simulation of Oxidation Reactions Mediated by Cytochrome P450

    No full text
    Combining electrochemistry with mass spectrometry constitutes an increasingly useful approach' for simulating reactions catalyzed by cytochrom P450 (CYP450). In this review, we discuss the ability of the electrochemical cell to act as a reliable tool to mimic CYP450. The electrochemical oxidation process and CYP450 catalyzed reactions are compared in terms of mechanistic pathways chemical structures of reactive intermediate metabolites, and final chemical structures of oxidation products. The oxidation reactions mediated by CYP450 are known to occur by either a single electron transfer (SET) or a hydrogen atom transfer (HAT) mechanism. The similarities between the reactions mediated electrochemically or by CYP450 are discussed in terms of SET and HAT mechanisms

    In Situ Ultrafast 2D NMR Spectroelectrochemistry for Real-Time Monitoring of Redox Reactions

    No full text
    The in situ implementation of an electrochemical cell (EC) inside a nuclear magnetic resonance (NMR) spectrometer is extremely powerful to study redox reactions in real time and identify unstable reaction intermediates. Unfortunately, the implementation of an electrochemical device near the sensitive volume of an NMR probe significantly affects the quality of the NMR signal, inducing significant line broadening resulting in peak overlap and partial loss of the multiplet structures. Two-dimensional (2D) NMR spectroscopy allows one to bypass signal overlapping by spreading the peaks along two orthogonal dimensions, while providing precious information in terms of structural elucidation. Nevertheless, the acquisition of 2D NMR data suffers from long acquisition durations which are incompatible with fast redox processes taking place in solution. Here, we present a new approach to deal with this issue, consisting of coupling EC-NMR with ultrafast 2D spectroscopy, capable of recording 2D spectra much faster than conventional 2D NMR. This approach is applied to the real-time monitoring of a model reaction. Fast correlation spectroscopy (COSY) spectra are recorded every 3 min in the course of the 80 min reaction, leading to the unambiguous identification of one reaction intermediate and two reaction products. The evolution of 2D NMR peak volumes in the course of time provides further insight into the mechanism of this reaction involving an unstable intermediate. This study demonstrates the feasibility and the relevance of coupling in situ spectroelectrochemistry with ultrafast 2D spectroscopy to monitor real-time electrochemical reactions in the NMR tube

    Recent Advances and Applications of Experimental Technologies in Marine Natural Product Research

    No full text
    Marine natural products are a rich source of novel and biologically active compounds. The number of identified marine natural compounds has grown 20% over the last five years from 2009 to 2013. Several challenges, including sample collection and structure elucidation, have limited the development of this research field. Nonetheless, new approaches, such as sampling strategies for organisms from extreme ocean environments, nanoscale NMR and computational chemistry for structural determination, are now available to overcome the barriers. In this review, we highlight the experimental technology innovations in the field of marine natural products, which in our view will lead to the development of many new drugs in the future

    Quantification of Oxidized and Unsaturated Bile Alcohols in Sea Lamprey Tissues by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry

    No full text
    A sensitive and reliable method was developed and validated for the determination of unsaturated bile alcohols in sea lamprey tissues using liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The liver, kidney, and intestine samples were extracted with acetonitrile and defatted by n-hexane. Gradient UHPLC separation was performed using an Acquity BEH C18 column with a mobile phase of water and methanol containing 20 mM triethylamine. Multiple reaction monitoring modes of precursor-product ion transitions for each analyte was used. This method displayed good linearity, with correlation coefficients greater than 0.99, and was validated. Precision and accuracy (RSD %) were in the range of 0.31%–5.28%, while mean recoveries were between 84.3%–96.3%. With this technique, sea lamprey tissue samples were analyzed for unsaturated bile alcohol analytes. This method is practical and particularly suitable for widespread putative pheromone residue analysis

    iso-Petromyroxols: Novel Dihydroxylated Tetrahydrofuran Enantiomers from Sea Lamprey (Petromyzon marinus)

    No full text
    An enantiomeric pair of new fatty acid-derived hydroxylated tetrahydrofurans, here named iso-petromyroxols, were isolated from sea lamprey larvae-conditioned water. The relative configuration of iso-petromyroxol was elucidated with 1D and 2D NMR spectroscopic analyses. The ratio of enantiomers (er) in the natural sample was measured by chiral-HPLC-MS/MS to be ca. 3:1 of (–)- to (+)-antipodes

    Diel Patterns of Pheromone Release by Male Sea Lamprey

    No full text
    Synopsis Costs to producing sexual signals can create selective pressures on males to invest signaling effort in particular contexts. When the benefits of signaling vary consistently across time, males can optimize signal investment to specific temporal contexts using biological rhythms. Sea lamprey, Petromyzon marinus, have a semelparous life history, are primarily nocturnal, and rely on pheromone communication for reproduction; however, whether male investment in pheromone transport and release matches increases in spawning activity remains unknown. By measuring (1) 3keto-petromyzonol sulfate (3kPZS, a main pheromone component) and its biosynthetic precursor PZS in holding water and tissue samples at six points over the course of 24 hours and (2) 3kPZS release over the course of several days, we demonstrate that 3kPZS release exhibits a consistent diel pattern across several days with elevated pheromone release just prior to sunset and at night. Trends in hepatic concentrations and circulatory transport of PZS and 3kPZS were relatively consistent with patterns of 3kPZS release and suggest the possibility of direct upregulation in pheromone transport and release rather than observed release patterns being solely a byproduct of increased behavioral activity. Our results suggest males evolved a signaling strategy that synchronizes elevated pheromone release with nocturnal increases in sea lamprey behavior. This may be imperative to ensure that male signaling effort is not wasted in a species having a single, reproductive event

    Data from: Phylogenetic distribution of a male pheromone that may exploit a nonsexual preference in lampreys

    No full text
    Pheromones are among the most important sexual signals used by organisms throughout the animal kingdom. However, few are identified in vertebrates, leaving the evolutionary mechanisms underlying vertebrate pheromones poorly understood. Pre-existing biases in receivers’ perceptual systems shape visual and auditory signaling systems, but studies on how receiver biases influence the evolution of pheromone communication remain sparse. The lamprey Petromyzon marinus uses a relatively well-understood suite of pheromones and offers a unique opportunity to study the evolution of vertebrate pheromone communication. Previous studies indicate that male signaling with the mating pheromone 3-keto petromyzonol sulfate (3kPZS) may exploit a nonsexual attraction to juvenile-released 3kPZS that guides migration into productive rearing habitat. Here, we infer the distribution of male signaling with 3kPZS using a phylogenetic comparison comprising six of ten genera and two of three families. Our results indicate that only P. marinus and Ichthyomyzon castaneus release 3kPZS at high rates. Olfactory and behavioral assays with P. marinus, I. castaneus and a subset of three other species that do not use 3kPZS as a sexual signal indicate that male signaling might drive the evolution of female adaptations to detect 3kPZS with specific olfactory mechanisms and respond to 3kPZS with targeted attraction relevant during mate search. We postulate that 3kPZS communication evolved independently in I. castaneus and P. marinus, but cannot eliminate the alternative that other species lost 3kPZS communication. Regardless, our results represent a rare macroevolutionary investigation of a vertebrate pheromone and insight into the evolutionary mechanisms underlying pheromone communication
    corecore