86 research outputs found

    Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. II. Model for metal nonlinear susceptibility

    Full text link
    We present a modeling of the nonlinear optical response of a metal surface in order to account for recent experimental results from two-color Sum-Frequency Generation experiments on gold. The model allows calculating the surface and bulk contributions, and explicitly separates free and bound electron terms. Contrary to the other contributions, the perpendicular surface component is strongly model-dependent through the surface electron density profiles. We consider three electron density schemes at the surface, with free and bound electrons overlapping or spilling out of the bulk, for its calculation. The calculated SFG signals from the metal rely only on bulk quantities and do not need an explicit definition of the density profiles. In the particular case of gold, when the free electrons overlap with the bound ones or spill out of the bulk, the free electron response completely dominates through the perpendicular surface terms. When the bound electrons spill out, the situation is more balanced, still in favor of the free electrons, with lower amplitudes and different dispersion lineshapes. As for silver, the free electron contributions dominate, and the calculated slow amplitude growth from blue to red follows the experimental trends

    Sum-Frequency Spectroscopy Amplified by Plasmonics: The Small Particle Case

    Get PDF
    International audienc

    Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. III. Simulations of the experimental SFG intensities

    Get PDF
    International audienceWe model the amplitude line shape and absolute phase of the infrared-visible sum-frequency signals produced by a thiolated polycrystalline gold surface as a function of the visible wavelength. We follow two hypotheses: in the interband scenario, the resonant features are attributed to interband transitions, whereas in the effective surface state scenario, they stem mostly from the excitation of surface transitions. We find that both scenarios lead to a satisfactory account of the experimental data and that only free electrons may spill out of the gold bulk, as expected. For the interband scenario, the balance between free and bound electron contributions to sum-frequency generation has to be adjusted to fit the data. The surface transitions are shown to take their origin inside gold and we investigate the surface states involved in such transitions, with a comparison to the silver surfaces. We finally provide a work program dedicated to discriminate between the two scenarios

    Determining Nonlinear Optical Coefficients of Metals by Multiple Angle of Incidence Heterodyne-Detected Sum-Frequency Generation Spectroscopy

    Get PDF
    International audienceWe illustrate a technique by which heterodyne-detected sum-frequency generation spectroscopy is performed at multiple angles of incidence in order to decompose components of the second-order susceptibility tensor when all beams are polarized parallel to the plane of incidence. As an illustration we study the non-vibrationally resonant gold response. We benchmark our results by comparing with measurements obtained in a polarization scheme that isolates a single element of the susceptibility tensor. Our technique is particularly valuable in the case of metal substrates, where the surface selection rule often prevents spectra from being acquired in multiple beam polarizations

    Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. I. Experimental determination

    Get PDF
    International audienceWe experimentally determine the effective nonlinear second-order susceptibility of gold over the visible spectral range. To reach that goal, we probe by vibrational two-color sum-frequency generation spectroscopy the methyl stretching region of a dodecanethiol self-assembled monolayer adsorbed on a gold film. The sum-frequency generation spectra show a remarkable shape reversal when the visible probe wavelength is tuned from 435 to 705 nm. After correcting from Fresnel effects, the methyl stretching vibrations serve as an internal reference, allowing to extract the dispersion of the absolute phase and relative amplitude of the effective nonlinear optical response of gold in the visible range. Published by AIP Publishing. https://doi

    The reduction of 4-nitrobenzene diazonium electrografted layer: An electrochemical study coupled to in situ sum-frequency generation spectroscopy

    Get PDF
    This work describes an electrochemical study of 4-nitrobenzene diazonium (4-NBD) reduction onto glassy carbon (GC) electrode coupled to in situ sum-frequency generation (SFG) spectroscopy. After 4-NBD grafting at 0.3 V vs. saturated calomel electrode (SCE) onto GC, SFG allowed a clear signal assigned to the symmetrical vibration mode of the nitro (NO2) groups to be observed at 1349 cm-1 or 1353 cm-1 depending on whether the spectrum was recorded in air or inside the solution. This result proved that 4-NBD grafting actually occurs at a potential as high as 0.3 V vs. SCE. The combination of SFG data and cyclic voltammetry (CV) also indicated that at such a potential, NO2 groups did not experience reduction process into hydroxylamine (NHOH) or amine (NH2) groups. The electrolysis of grafted NO2 moieties at -0.1 V was followed by CV and in situ by SFG. The exponential decay of the NO2 signal located at 1353 cm-1 vs. electrolysis time was in accordance with a charge transfer-limited reaction rate for a species immobilized at the electrode surface, and allowed a first order kinetic rate constant for NO2 reduction to be estimated k = 0.006 s-1. The integration of the peaks observed on the corresponding cyclic voltammograms (CVs) which were attributed to the NO/NHOH reversible system showed that the NO2 reduction produced both hydroxylamine and amine groups and was not quantitative. The fact that SFG spectroscopy was silent for long electrolysis time values suggested the remaining nitro groups to be located far from the electrode surface, as a consequence of an electron tunneling efficiency which decreased throughout the film thickness. Further electrolysis at -0.8 V allowed the remaining nitro groups to be reduced into NH2 with almost quantitative yields. All these results suggest the existence of a stratified layer during the electrolysis process, in which there is no limitation due to H+ diffusion in the organic film

    Keratins and lipids in ethnic hair

    Get PDF
    Human hair has an important and undeniable relevance in society due to its important role in visual appearance and social communication. Hair is mainly composed of structural proteins, mainly keratin and keratin associated proteins, and lipids. Herein, we report a comprehensive study of the content and distribution of the lipids among ethnic hair, African, Asian and Caucasian hair. More interestingly, we also report the study of the interaction between those two main components of hair, specifically the influence of the hair internal lipids in the structure of the hair keratin. This was achieved by the use of a complete set of analytical tools such as thin layer chromatography-flame ionization detector, X-ray analysis, molecular dynamics simulation and confocal microscopy. The experimental results indicated different amounts of lipids on ethnic hair compositions and higher percentage of hair internal lipids in African hair. In this type of hair, the axial diffraction of keratin was not observed in X-ray analysis, but after hair lipids removal, the keratin returned to its typical packing arrangement. In molecular dynamic simulation lipids were shown to intercalate dimers of keratin, changing its structure. From those results we assume that keratin structure may be influenced by higher concentration of lipids in African hair.Margarida Fernandes held a PhD scholarship from Fundacaopara a Ciencia e Tecnologia (SFRH/BD/38 363/2007). The authors thank Vadim Volkov for the contribution with the confocal images
    • …
    corecore