524 research outputs found
Alternative strategies to inhibit tumor vascularization
Endothelial cells present in tumors show different origin, phenotype, and genotype with respect to the normal counterpart. Various mechanisms of intra-tumor vasculogenesis sustain the complexity of tumor vasculature, which can be further modified by signals deriving from the tumor microenvironment. As a result, resistance to anti-VEGF therapy and activation of compensatory pathways remain a challenge in the treatment of cancer patients, revealing the need to explore alternative strategies to the classical anti-angiogenic drugs. In this review, we will describe some alternative strategies to inhibit tumor vascularization, including targeting of antigens and signaling pathways overexpressed by tumor endothelial cells, the development of endothelial vaccinations, and the use of extracellular vesicles. In addition, anti-angiogenic drugs with normalizing effects on tumor vessels will be discussed. Finally, we will present the concept of endothelial demesenchymalization as an alternative approach to restore normal endothelial cell phenotype
The Expression of CD154 by Kaposi's Sarcoma Cells Mediates the Anti-Apoptotic and Migratory Effects of HIV-1-Tat Protein:
Kaposi's sarcoma (KS) is a malignancy associated to conditions of immune system impairment such as HIV-1 infection and post-transplantation therapy. Here we report that HIV-1-Tat protein, at concentrations well below those detected in AIDS patients, up-regulates the expression of both CD40 and CD154 on KS cells. This occurred also in the presence of vincristine, that at doses shown to induce apoptosis decreased the expression of both CD40 and CD154 on KS cells. The treatment with a soluble CD40-muIg fusion protein (CD40 fp) that prevents the binding of CD154 with cell surface CD40, as well as the transfection with a vector for soluble CD40 (KS sCD40), decreased the anti-apoptotic effect of Tat. Moreover, Tat-induced motility of KS cells was inhibited by soluble CD40 fp. Tat also enhanced the expression of intracellular proteins known to transduce signals triggered by CD40 engagement, in particular TRAF-3. Tat as well as soluble CD154 (sCD154) prevented vincristine-induced reduction of TRAF-3 in KS cells t..
Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment
The epithelial to mesenchymal transition (EMT) is an evolutionarily conserved process. In cancer, EMT can activate biochemical changes in tumor cells that enable the destruction of the cellular polarity, leading to the acquisition of invasive capabilities. EMT regulation can be triggered by intrinsic and extrinsic signaling, allowing the tumor to adapt to the microenvironment demand in the different stages of tumor progression. In concomitance, tumor cells undergoing EMT actively interact with the surrounding tumor microenvironment (TME) constituted by cell components and extracellular matrix as well as cell secretome elements. As a result, the TME is in turn modulated by the EMT process toward an aggressive behavior. The current review presents the intrinsic and extrinsic modulators of EMT and their relationship with the TME, focusing on the non-cell-derived components, such as secreted metabolites, extracellular matrix, as well as extracellular vesicles. Moreover, we explore how these modulators can be suitable targets for anticancer therapy and personalized medicine
Preparation of human primary macrophages to study the polarization from monocyte-derived macrophages to pro- or anti-inflammatory macrophages at biomaterial interface in vitro
Background/purpose: Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper in vitro models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials. The goal of the present work is to present and validate an innovative protocol to obtain MDMs from peripheral blood monocytes, and to reseed them in contact with biomaterials without altering their viability and phenotype. Materials and methods: We differentiated MDMs on ultra-low attachment tissue culture plastics and recovered them with specific detachment solution in order to be reseeded on a secondary substrate. Therefore, using biological assays (RT-PCR, Western blot, and immunofluorescence) we compared their phenotype to MDMs differentiated on standard culture plates. Results: Transferred MDMs keep their differentiated M0 resting state, as well as the ability to be polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages. Conclusion: These data provide the dental material research community the unprecedented possibility to investigate the immunomodulatory properties of biomaterials for dental application
Mesenchymal stem cell-derived extracellular vesicles protect human corneal endothelial cells from endoplasmic reticulum stress-mediated apoptosis
Corneal endothelial dystrophy is a relevant cause of vision loss and corneal transplantation worldwide. In the present study, we analyzed the effect of mesenchymal stem cell (MSC)-derived extracellular vesicles (MSC-EVs) in an in vitro model of corneal dystrophy, characterized by endoplasmic reticulum stress. The effects of MSC-EVs were compared with those of serum-derived EVs, reported to display a pro-angiogenic activity. MSC-EVs were able to induce a significant down-regulation of the large majority of endoplasmic reticulum stress-related genes in human corneal endothelial cells after exposure to serum deprivation and tunicamycin. In parallel, they upregulated the Akt pathway and limited caspase-3 activation and apoptosis. At variance, the effect of the serum EVs was mainly limited to Akt phosphorylation, with minimal or absent effects on endoplasmic reticulum stress modulation and apoptosis prevention. The effects of MSC-EVs were correlated to the transfer of numerous endoplasmic reticulum (ER)-stress targeting miRNAs to corneal endothelial cells. These data suggest a potential therapeutic effect of MSC-EVs for corneal endothelial endoplasmic reticulum stress, a major player in corneal endothelial dystrophy
Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats
Several studies indicate that adult stem cells may improve the recovery from acute tissue injury. It has been suggested that they may contribute to tissue regeneration by the release of paracrine factors promoting proliferation of tissue resident cells. However, the factors involved remain unknown. In the present study we found that microvesicles (MVs) derived from human liver stem cells (HLSC) induced in vitro proliferation and apoptosis resistance of human and rat hepatocytes. These effects required internalization of MVs in the hepatocytes by an α4-integrin-dependent mechanism. However, MVs pre-treated with RNase, even if internalized, were unable to induce hepatocyte proliferation and apoptosis resistance, suggesting an RNA-dependent effect. Microarray analysis and quantitative RT-PCR demonstrated that MVs were shuttling a specific subset of cellular mRNA, such as mRNA associated in the control of transcription, translation, proliferation and apoptosis. When administered in vivo, MVs accelerated the morphological and functional recovery of liver in a model of 70% hepatectomy in rats. This effect was associated with increase in hepatocyte proliferation and was abolished by RNase pre-treatment of MVs. Using human AGO2, as a reporter gene present in MVs, we found the expression of human AGO2 mRNA and protein in the liver of hepatectomized rats treated with MVs. These data suggested a translation of the MV shuttled mRNA into hepatocytes of treated rats. In conclusion, these results suggest that MVs derived from HLSC may activate a proliferative program in remnant hepatocytes after hepatectomy by a horizontal transfer of specific mRNA subsets
- …