229 research outputs found

    Competing interactions of spin and lattice in the Kondo lattice model

    Full text link
    The magnetic properties of a system of coexisting localized spins and conduction electrons are investigated within an extended version of the one dimensional Kondo lattice model in which effects stemming from the electron-lattice and on-site Coulomb interactions are explicitly included. After bosonizing the conduction electrons, is it observed that intrinsic inhomogeneities with the statistical scaling properties of a Griffiths phase appear, and determine the spin structure of the localized impurities. The appearance of the inhomogeneities is enhanced by appropriate phonons and acts destructively on the spin ordering. The inhomogeneities appear on well defined length scales, can be compared to the formation of intrinsic mesoscopic metastable patterns which are found in two-fluid systems.Comment: 9 pages, to appear in Jour. Superconductivit

    Oxygen-isotope effect on the superconducting gap in the cuprate superconductor Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta}

    Full text link
    The oxygen-isotope (^{16}O/^{18}O) effect (OIE) on the zero-temperature superconducting energy gap \Delta_0 was studied for a series of Y_{1-x}Pr_xBa_2Cu_3O_{7-\delta} samples (0.0\leq x\leq0.45). The OIE on \Delta_0 was found to scale with the one on the superconducting transition temperature. These experimental results are in quantitative agreement with predictions from a polaronic model for cuprate high-temperature superconductors and rule out approaches based on purely electronic mechanisms.Comment: 5 pages, 3 figure

    Screening in (d+s)-wave superconductors: Application to Raman scattering

    Full text link
    We study the polarization-dependent electronic Raman response of untwinned YBa2_2Cu3_3O7−δ_{7-\delta} superconductors employing a tight-binding band structure with anisotropic hopping matrix parameters and a superconducting gap with a mixing of dd- and s-wave symmetry. Using general arguments we find screening terms in the B^{\}_{1g} scattering channel which are required by gauge invariance. As a result, we obtain a small but measurable softening of the pair-breaking peak, whose position has been attributed for a long time to twice the superconducting gap maximum. Furthermore, we predict superconductivity-induced changes in the phonon line shapes that could provide a way to detect the isotropic s-wave admixture to the superconducting gap.Comment: typos corrected, 6 pages, 3 figure

    Polaron Coherence as Origin of the Pseudogap Phase in High Temperature Superconducting Cuprates

    Get PDF
    Within a two component approach to high Tc copper oxides including polaronic couplings, we identify the pseudogap phase as the onset of polaron ordering. This ordering persists in the superconducting phase. A huge isotope effect on the pseudogap onset temperature is predicted and in agreement with experimental data. The anomalous temperature dependence of the mean square copper oxygen ion displacement observed above, at and below Tc stems from an s-wave superconducting component of the order parameter, whereas a pure d-wave order parameter alone can be excluded.Comment: 7 pages, 2 figure

    Hybrid paramagnon phonon modes at elevated temperatures in EuTiO3

    Full text link
    EuTiO3 (ETO) has recently experienced an enormous revival of interest because of its possible multiferroic properties which are currently in the focus of research. Unfortunately ETO is an unlikely candidate for enlarged multifunctionality since the mode softening - typical for ferroelectrics - remains incomplete, and the antiferromagnetic properties appear at 5.5K only. However, a strong coupling between lattice and Eu spins exists and leads to the appearance of a magnon-phonon-hybrid mode at elevated temperatures as evidenced by electron paramagnetic resonance (EPR), muon spin rotation ({\mu}SR) experiments and model predictions based on a coupled spin-polarizability Hamiltonian. This novel finding supports the notion of strong magneto-dielectric (MD) effects being realized in ETO and opens new strategies in material design and technological applications.Comment: 9 pages, 4 figure

    Determination of elastic stiffness coefficients of lead zirconate single crystals in the cubic phase by Brillouin light scattering

    Get PDF
    The temperature dependence of the three independent elastic constants of antiferroelectric lead zirconate single crystals was determined in the cubic, paraelectric phase by Brillouin light scattering spectroscopy. Two longitudinal elastic moduli of C11 and (C11 + C12+2 C 44)/2 showed softening upon cooling toward the phase transition temperature, indicating the coupling of the acoustic waves to the polarization fluctuations of the precursor polar clusters. Among the two transverse acoustic modes, C44 was almost constant while (C11-C 12)/2 showed a noticeable softening in the paraelectric phase. This was attributed to the acoustic instability of lead zirconate toward the orthorhombic ground state

    Lattice and polarizability mediated spin activity in EuTiO_3

    Full text link
    EuTiO_3 is shown to exhibit novel strong spin-charge-lattice coupling deep in the paramagnetic phase. Its existence is evidenced by an, until now, unknown response of the paramagnetic susceptibility at temperatures exceeding the structural phase transition temperature T_S = 282K. The "extra" features in the susceptibility follow the rotational soft zone boundary mode temperature dependence above and below T_S. The theoretical modeling consistently reproduces this behavior and provides reasoning for the stabilization of the soft optic mode other than quantum fluctuations.Comment: 8 pages, 4 figure

    Determination of elastic stiffness coefficients of lead zirconate single crystals in the cubic phase by Brillouin light scattering

    Get PDF
    The temperature dependence of the three independent elastic constants of antiferroelectric lead zirconate single crystals was determined in the cubic, paraelectric phase by Brillouin light scattering spectroscopy. Two longitudinal elastic moduli of C11 and (C11 + C12+2 C 44)/2 showed softening upon cooling toward the phase transition temperature, indicating the coupling of the acoustic waves to the polarization fluctuations of the precursor polar clusters. Among the two transverse acoustic modes, C44 was almost constant while (C11-C 12)/2 showed a noticeable softening in the paraelectric phase. This was attributed to the acoustic instability of lead zirconate toward the orthorhombic ground state
    • …
    corecore