27 research outputs found

    Evolution of the Most Luminous Dusty Galaxies

    Full text link
    A summary of mid-infrared continuum luminosities arising from dust is given for very luminous galaxies, Lir > 10^12 solar luminosities, with 0.005 < z < 3.2 containing active galactic nuclei (AGN), including 115 obscured AGN and 60 unobscured (type 1) AGN. All sources have been observed with the Spitzer Infrared Spectrograph. Obscured AGN are defined as having optical depth > 0.7 in the 9.7 um silicate absorption feature and unobscured AGN show silicate in emission. Luminosity vLv(8 um) is found to scale as (1+z)^2.6 to z = 2.8, and luminosities vLv(8 um) are approximately 3 times greater for the most luminous unobscured AGN. Total infrared luminosities for the most luminous obscured AGN, Lir(AGN_obscured) in solar luminosities, scale as log Lir(AGN_obscured) = 12.3+-0.25 + 2.6(+-0.3)log(1+z), and for the most luminous unobscured AGN, scale as log Lir(AGN1) = 12.6+-0.15 + 2.6(+-0.3)log(1+z), indicating that the most luminous AGN are about 10 times more luminous than the most luminous starbursts. Results are consistent with obscured and unobscured AGN having the same total luminosities with differences arising only from orientation, such that the obscured AGN are observed through very dusty clouds which extinct about 50% of the intrinsic luminosity at 8 um. Both obscured and unobscured AGN should be detected to z ~ 6 by Spitzer surveys with fv(24 um) > 0.3 mJy, even without luminosity evolution for z > 2.5. By contrast, the most luminous starbursts cannot be detected for z > 3, even if luminosity evolution continues beyond z = 2.5.Comment: Includes corrected Figure 3, as publishe

    Traditional medicinal plant knowledge and use by local healers in Sekoru District, Jimma Zone, Southwestern Ethiopia

    Get PDF
    The knowledge and use of medicinal plant species by traditional healers was investigated in Sekoru District, Jimma Zone, Southwestern Ethiopia from December 2005 to November 2006. Traditional healers of the study area were selected randomly and interviewed with the help of translators to gather information on the knowledge and use of medicinal plants used as a remedy for human ailments in the study area. In the current study, it was reported that 27 plant species belonging to 27 genera and 18 families were commonly used to treat various human ailments. Most of these species (85.71%) were wild and harvested mainly for their leaves (64.52%). The most cited ethnomedicinal plant species was Alysicarpus quartinianus A. Rich., whose roots and leaves were reported by traditional healers to be crushed in fresh and applied as a lotion on the lesions of patients of Abiato (Shererit). No significant correlation was observed between the age of traditional healers and the number of species reported and the indigenous knowledge transfer was found to be similar. More than one medicinal plant species were used more frequently than the use of a single species for remedy preparations. Plant parts used for remedy preparations showed significant difference with medicinal plant species abundance in the study area

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Environmentally-Friendly Flaring

    No full text
    Before the 1940s, it was a common practice in industry to vent hydrocarbon process streams to the atmosphere, unburned. Typical vent gases are flammable and may contain harmful chemicals. Eventually, regulations required that these vented streams be burned, so flares became both a safety and environmental control device. Since the inception of flaring, technology advancements have made some significant progress towards making flaring more environmentally-friendly. These include: (1) reducing the fuel consumption of flare pilots, (2) implementing purge reduction devices to reduce the amount of supplemental fuel gas burned (3) using steam more efficiently to achieve smokeless flaring and (4) installing flare gas recovery systems to reduce the amount of gas flared. The purpose of this paper is to discuss how these methods conserve energy and reduce emissions from flares
    corecore