7 research outputs found

    Preclinical investigations using [177Lu]Lu-Ibu-DAB-PSMA toward its clinical translation for radioligand therapy of prostate cancer

    Full text link
    [177^{177}Lu]Lu-Ibu-DAB-PSMA was previously characterized with moderate albumin-binding properties enabling high tumor accumulation but reasonably low retention in the blood. The aim of this study was to investigate [177^{177}Lu]Lu-Ibu-DAB-PSMA in preclinical in vivo experiments and compare its therapeutic efficacy and potential undesired side effects with those of [177^{177}Lu]Lu-PSMA-617 and the previously developed [177^{177}Lu]Lu-PSMA-ALB-56. BALB/c nude mice without tumors were investigated on Day 10 and 28 after injection of 10 MBq radioligand. It was revealed that most plasma parameters were in the same range for all groups of mice and histopathological examinations of healthy tissue did not show any alternations in treated mice as compared to untreated controls. Based on these results, a therapy study over twelve weeks was conducted with PC-3 PIP tumor-bearing mice for comparison of the radioligands’s therapeutic efficacy up to an activity of 10 MBq (1 nmol) per mouse. In agreement with the increased mean absorbed tumor dose, [177^{177}Lu]Lu-Ibu-DAB-PSMA (~ 6.6 Gy/MBq) was more effective to inhibit tumor growth than [177^{177}Lu]Lu-PSMA-617 (~ 4.5 Gy/MBq) and only moderately less potent than [177^{177}Lu]Lu-PSMA-ALB-56 (~ 8.1 Gy/MBq). As a result, the survival of mice treated with 2 MBq of an albumin-binding radioligand was significantly increased (p < 0.05) compared to that of mice injected with [177^{177}Lu]Lu-PSMA-617 or untreated controls. The majority of mice treated with 5 MBq or 10 MBq [177^{177}Lu]Lu-Ibu-DAB-PSMA or [177^{177}Lu]Lu-PSMA-ALB-56 were still alive at study end. Hemograms of immunocompetent mice injected with 30 MBq [177^{177}Lu]Lu-Ibu-DAB-PSMA or 30 MBq [177^{177}Lu]Lu-PSMA-617 showed values in the same range as untreated controls. This was, however, not the case for mice treated with [177^{177}Lu]Lu-PSMA-ALB-56 which revealed a drop in lymphocytes and hemoglobin at Day 10 and Day 28 after injection. The data of this study demonstrated a significant therapeutic advantage of [177^{177}Lu]Lu-Ibu-DAB-PSMA over [177^{177}Lu]Lu-PSMA-617 and a more favorable safety profile as compared to that of [177^{177}Lu]Lu-PSMA-ALB-56. Based on these results, [177^{177}Lu]Lu-Ibu-DAB-PSMA may has the potential for a clinical translation

    [225Ac]Ac-SibuDAB for Targeted Alpha Therapy of Prostate Cancer: Preclinical Evaluation and Comparison with [225Ac]Ac-PSMA-617

    No full text
    In the present study, SibuDAB, an albumin-binding PSMA ligand, was investigated in combination with actinium-225 and the data were compared with those of [225Ac]Ac-PSMA-617. In vitro, [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617 showed similar tumor cell uptake and PSMA-binding affinities as their 177Lu-labeled counterparts. The in vitro binding to serum albumin in mouse and human blood plasma, respectively, was 2.8-fold and 1.4-fold increased for [225Ac]Ac-SibuDAB as compared to [177Lu]Lu-SibuDAB. In vivo, this characteristic was reflected by the longer retention of [225Ac]Ac-SibuDAB in the blood than previously seen for [177Lu]Lu-SibuDAB. Similar to [225Ac]Ac-PSMA-617, [225Ac]Ac-SibuDAB was well tolerated at 30 kBq per mouse. Differences in blood cell counts were observed between treated mice and untreated controls, but no major variations were observed between values obtained for [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617. [225Ac]Ac-SibuDAB was considerably more effective to treat PSMA-positive tumor xenografts than [225Ac]Ac-PSMA-617. Only 5 kBq per mouse were sufficient to eradicate the tumors, whereas tumor regrowth was observed for mice treated with 5 kBq [225Ac]Ac-PSMA-617 and only one out of six mice survived until the end of the study. The enhanced therapeutic efficacy of [225Ac]Ac-SibuDAB as compared to that of [225Ac]Ac-PSMA-617 and reasonable safety data qualify this novel radioligand as a candidate for targeted α-therapy of prostate cancer.ISSN:2072-669

    [225Ac]Ac-SibuDAB for Targeted Alpha Therapy of Prostate Cancer: Preclinical Evaluation and Comparison with [225Ac]Ac-PSMA-617

    No full text
    In the present study, SibuDAB, an albumin-binding PSMA ligand, was investigated in combination with actinium-225 and the data were compared with those of [225Ac]Ac-PSMA-617. In vitro, [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617 showed similar tumor cell uptake and PSMA-binding affinities as their 177Lu-labeled counterparts. The in vitro binding to serum albumin in mouse and human blood plasma, respectively, was 2.8-fold and 1.4-fold increased for [225Ac]Ac-SibuDAB as compared to [177Lu]Lu-SibuDAB. In vivo, this characteristic was reflected by the longer retention of [225Ac]Ac-SibuDAB in the blood than previously seen for [177Lu]Lu-SibuDAB. Similar to [225Ac]Ac-PSMA-617, [225Ac]Ac-SibuDAB was well tolerated at 30 kBq per mouse. Differences in blood cell counts were observed between treated mice and untreated controls, but no major variations were observed between values obtained for [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617. [225Ac]Ac-SibuDAB was considerably more effective to treat PSMA-positive tumor xenografts than [225Ac]Ac-PSMA-617. Only 5 kBq per mouse were sufficient to eradicate the tumors, whereas tumor regrowth was observed for mice treated with 5 kBq [225Ac]Ac-PSMA-617 and only one out of six mice survived until the end of the study. The enhanced therapeutic efficacy of [225Ac]Ac-SibuDAB as compared to that of [225Ac]Ac-PSMA-617 and reasonable safety data qualify this novel radioligand as a candidate for targeted &alpha;-therapy of prostate cancer

    Inductively Coupled Plasma Mass Spectrometry-A Valid Method for the Characterization of Metal Conjugates in View of the Development of Radiopharmaceuticals

    No full text
    This study addresses the question whether in-ductively coupled plasma mass spectrometry (ICP-MS) can be used as a method for the in vitro and in vivo characterization of non-radioactive metal conjugates to predict the properties of analogous radiopharmaceuticals. In a "proof-of-concept" study, the prostate-specific membrane antigen (PSMA)-targeting [175Lu]Lu-PSMA-617 and [159Tb]Tb-PSMA-617 were compared with their respective radiolabeled analogues, [177Lu]Lu-PSMA-617 (PLU-VICTO, Novartis) and [161Tb]Tb-PSMA-617. ICP-MS and conventional gamma-counting of the cell samples revealed almost identical results (<6% absolute difference between the two technologies) for the in vitro uptake and internalization of the (radio)metal conjugates, irrespective of the employed methodology. In vivo, an equal uptake in PSMA-positive PC-3 PIP tumor xenografts was determined 1 h after the injection of [175Lu]Lu-/[177Lu]Lu-PSMA-617 (41 +/- 6% ID/g and 44 +/- 12% IA/g, respectively) and [159Tb]Tb-/[161Tb]Tb-PSMA-617 (44 +/- 5% ID/g and 44 +/- 5% IA/g, respectively). It was further revealed that it is crucial to use the same ratios of the (radio)metal-labeled and unlabeled ligands for both methodologies to obtain equal data in organs in which receptor saturation was reached such as the kidneys (12 +/- 2% ID/g vs 10 +/- 1% IA/g, 1 h after injection). The data of this study demonstrate that the use of high-sensitivity ICP-MS allows reliable and predictive quantification of compounds labeled with stable metal isotopes in cell and tissue samples obtained in preclinical studies. It can, hence, be employed as a valid alternative to the state-of-the-art gamma-counting methodology to detect radioactive ligands.ISSN:1543-8384ISSN:1543-839

    Preclinical investigations using [177Lu]Lu-Ibu-DAB-PSMA toward its clinical translation for radioligand therapy of prostate cancer

    No full text
    [177Lu]Lu-Ibu-DAB-PSMA was previously characterized with moderate albumin-binding properties enabling high tumor accumulation but reasonably low retention in the blood. The aim of this study was to investigate [177Lu]Lu-Ibu-DAB-PSMA in preclinical in vivo experiments and compare its therapeutic efficacy and potential undesired side effects with those of [177Lu]Lu-PSMA-617 and the previously developed [177Lu]Lu-PSMA-ALB-56. BALB/c nude mice without tumors were investigated on Day 10 and 28 after injection of 10 MBq radioligand. It was revealed that most plasma parameters were in the same range for all groups of mice and histopathological examinations of healthy tissue did not show any alternations in treated mice as compared to untreated controls. Based on these results, a therapy study over twelve weeks was conducted with PC-3 PIP tumor-bearing mice for comparison of the radioligands’s therapeutic efficacy up to an activity of 10 MBq (1 nmol) per mouse. In agreement with the increased mean absorbed tumor dose, [177Lu]Lu-Ibu-DAB-PSMA (~ 6.6 Gy/MBq) was more effective to inhibit tumor growth than [177Lu]Lu-PSMA-617 (~ 4.5 Gy/MBq) and only moderately less potent than [177Lu]Lu-PSMA-ALB-56 (~ 8.1 Gy/MBq). As a result, the survival of mice treated with 2 MBq of an albumin-binding radioligand was significantly increased (p < 0.05) compared to that of mice injected with [177Lu]Lu-PSMA-617 or untreated controls. The majority of mice treated with 5 MBq or 10 MBq [177Lu]Lu-Ibu-DAB-PSMA or [177Lu]Lu-PSMA-ALB-56 were still alive at study end. Hemograms of immunocompetent mice injected with 30 MBq [177Lu]Lu-Ibu-DAB-PSMA or 30 MBq [177Lu]Lu-PSMA-617 showed values in the same range as untreated controls. This was, however, not the case for mice treated with [177Lu]Lu-PSMA-ALB-56 which revealed a drop in lymphocytes and hemoglobin at Day 10 and Day 28 after injection. The data of this study demonstrated a significant therapeutic advantage of [177Lu]Lu-Ibu-DAB-PSMA over [177Lu]Lu-PSMA-617 and a more favorable safety profile as compared to that of [177Lu]Lu-PSMA-ALB-56. Based on these results, [177Lu]Lu-Ibu-DAB-PSMA may has the potential for a clinical translation.ISSN:1619-7070ISSN:1619-708

    Investigations Using Albumin Binders to Modify the Tissue Distribution Profile of Radiopharmaceuticals Exemplified with Folate Radioconjugates

    No full text
    Introducing an albumin-binding entity into otherwise short-lived radiopharmaceuticals can be an effective means to improve their pharmacokinetic properties due to enhanced blood residence time. In the current study, DOTA-derivatized albumin binders based on 4-(p-iodophenyl)butanoate (DOTA-ALB-1 and DOTA-ALB-3) and 5-(p-iodophenyl)pentanoate entities (DOTA-ALB-24 and DOTA-ALB-25) without and with a hydrophobic 4-(aminomethyl)benzoic acid (AMBA) linker unit, respectively, were synthesized and labeled with lutetium-177 for in vitro and in vivo comparison. Overall, [177Lu]Lu-DOTA-ALB-1 demonstrated ~3-fold stronger in vitro albumin-binding affinity and a longer blood residence time (T50%IA ~8 h) than [177Lu]Lu-DOTA-ALB-24 (T50%IA ~0.8 h). Introducing an AMBA linker enhanced the albumin-binding affinity, resulting in a T50%IA of ~24 h for [177Lu]Lu-DOTA-ALB-3 and ~2 h for [177Lu]Lu-DOTA-ALB-25. The same albumin binders without or with the AMBA linker were incorporated into 6R- and 6S-5-methyltetrahydrofolate-based DOTA-conjugates (177Lu-RedFols). Biodistribution studies in mice performed with both diastereoisomers of [177Lu]Lu-RedFol-1 and [177Lu]Lu-RedFol-3, which comprised the 4-(p-iodophenyl)butanoate moiety, demonstrated a slower accumulation in KB tumors than those of [177Lu]Lu-RedFol-24 and [177Lu]Lu-RedFol-25 with the 5-(p-iodophenyl)pentanoate entity. In all cases, the tumor uptake was high (30–45% IA/g) 24 h after injection. Both diastereoisomers of [177Lu]Lu-RedFol-1 and [177Lu]Lu-RedFol-3 demonstrated high blood retention (3.8–8.7% IA/g, 24 h p.i.) and a 2- to 4-fold lower kidney uptake than the corresponding diastereoisomers of [177Lu]Lu-RedFol-24 and [177Lu]Lu-RedFol-25, which were more rapidly cleared from the blood (<0.2% IA/g, 24 h after injection). Kidney retention of the 6S-diastereoisomers of all 177Lu-RedFols was consistently higher than that of the respective 6R-diastereoisomers, irrespective of the albumin binder and linker unit used. It was demonstrated that the blood clearance data obtained with 177Lu-DOTA-ALBs had predictive value for the blood retention times of the respective folate radioconjugates. The use of these albumin-binding entities without or with an AMBA linker may serve for fine-tuning the blood retention of folate radioconjugates and also other radiopharmaceuticals and, hence, optimize their tissue distribution profiles. Dosimetry estimations based on patient data obtained with one of the most promising folate radioconjugates will be crucial to identify the dose-limiting organ, which will allow for selecting the most suitable folate radioconjugate for therapeutic purposes.ISSN:2072-669

    Biallelic PAX5 mutations cause hypogammaglobulinemia, sensorimotor deficits, and autism spectrum disorder

    Get PDF
    The genetic causes of primary antibody deficiencies and autism spectrum disorder (ASD) are largely unknown. Here, we report a patient with hypogammaglobulinemia and ASD who carries biallelic mutations in the transcription factor PAX5. A patient-specific Pax5 mutant mouse revealed an early B cell developmental block and impaired immune responses as the cause of hypogammaglobulinemia. Pax5 mutant mice displayed behavioral deficits in all ASD domains. The patient and the mouse model showed aberrant cerebellar foliation and severely impaired sensorimotor learning. PAX5 deficiency also caused profound hypoplasia of the substantia nigra and ventral tegmental area due to loss of GABAergic neurons, thus affecting two midbrain hubs, controlling motor function and reward processing, respectively. Heterozygous Pax5 mutant mice exhibited similar anatomic and behavioral abnormalities. Lineage tracing identified Pax5 as a crucial regulator of cerebellar morphogenesis and midbrain GABAergic neurogenesis. These findings reveal new roles of Pax5 in brain development and unravel the underlying mechanism of a novel immunological and neurodevelopmental syndrome
    corecore