9 research outputs found
Einfluss gekrümmter Sequenzen auf Fernwechselwirkungen in superhelikaler DNA
Gekrümmte Sequenzbereiche nehmen bevorzugt eine Endschleifenposition in scDNA ein. Daraus sollte eine festgelegte dreidimensionale scDNA-Konformation resultieren, die die Wechselwirkungswahrscheinlichkeit von entfernt liegenden Orten in der DNA beeinflusst. Der Einfluss von Krümmung auf Fernwechselwirkungen in scDNA wurde durch kinetische Messungen der intramolekularen Vernetzung zweier sequenzspezifisch biotinylierter Stellen in der DNA über Streptavidin charakterisiert. Die Markierung der DNA erfolgte über triplexbildende Oligonukleotide (TFOs), die mit Biotin modifiziert waren. Die Biotinylierungsstellen lagen flankierend zu einer Insertion, die eine sequenzinduzierte Krümmung aufweist. Es wurde die lokale Konzentration JM einer Biotinylierungsposition in der Umgebung der zweiten und intramolekulare Reaktionskonstanten bestimmt. Die jM-Werte wurden mit Computersimulationen der untersuchten DNAs verglichen. Für scDNA ohne Krümmung stimmten experimentelle und simulierte Befunde nahezu genau überein. Weiterhin sank jM in quantitativer Übereinstimmung mit den Simulationen für zunehmend asymmetrische Positionen der Marker in Relation zur Krümmung. Allerdings widersprach eine geringe Erhöhung von jM in scDNA mit Krümmung gegenüber einer Kontrolle ohne Krümmung den Simulationen, die einen stärkeren Einfluss erwarten ließen. Dies ist wahrscheinlich auf eine sterische Behinderung des an einer biotinylierten Stelle gebundenen Strept-POD in der Superhelix zurückzuführen. Der Effekt trat in scDNA mit Krümmung, dessen Bewegungsfreiheitsgrade wegen der Endschleifenposition der Krümmung reduziert sind, deutlich hervor. Die Befunde deuten darauf hin, dass eine lokale Krümmung in scDNA Interaktionen zwischen Orten über große Entfernungen beeinflussen kan
Segrosome assembly at the pliable parH centromere
The segrosome of multiresistance plasmid TP228 comprises ParF, which is a member of the ParA ATPase superfamily, and the ParG ribbon–helix–helix factor that assemble jointly on the parH centromere. Here we demonstrate that the distinctive parH site (∼100-bp) consists of an array of degenerate tetramer boxes interspersed by AT-rich spacers. Although numerous consecutive AT-steps are suggestive of inherent curvature, parH lacks an intrinsic bend. Sequential deletion of parH tetramers progressively reduced centromere function. Nevertheless, the variant subsites could be rearranged in different geometries that accommodated centromere activity effectively revealing that the site is highly elastic in vivo. ParG cooperatively coated parH: proper centromere binding necessitated the protein's N-terminal flexible tails which modulate the centromere binding affinity of ParG. Interaction of the ParG ribbon–helix–helix domain with major groove bases in the tetramer boxes likely provides direct readout of the centromere. In contrast, the AT-rich spacers may be implicated in indirect readout that mediates cooperativity between ParG dimers assembled on adjacent boxes. ParF alone does not bind parH but instead loads into the segrosome interactively with ParG, thereby subtly altering centromere conformation. Assembly of ParF into the complex requires the N-terminal flexible tails in ParG that are contacted by ParF
Organisation of nucleosomal arrays reconstituted with repetitive African green monkey α-satellite DNA as analysed by atomic force microscopy
Alpha-satellite DNA (AS) is part of centromeric DNA and could be relevant for centromeric chromatin structure: its repetitive character may generate a specifically ordered nucleosomal arrangement and thereby facilitate kinetochore protein binding and chromatin condensation. Although nucleosomal positioning on some satellite sequences had been shown, including AS from African green monkey (AGM), the sequence-dependent nucleosomal organisation of repetitive AS of this species has so far not been analysed. We therefore studied the positioning of reconstituted nucleosomes on AGM AS tandemly repeated DNA. Enzymatic analysis of nucleosome arrays formed on an AS heptamer as well as the localisation of mononucleosomes on an AS dimer by atomic force microscopy (AFM) showed one major positioning frame, in agreement with earlier results. The occupancy of this site was in the range of 45–50%, in quite good agreement with published in vivo observations. AFM measurements of internucleosomal distances formed on the heptamer indicated that the nucleosomal arrangement is governed by sequence-specific DNA-histone interactions yielding defined internucleosomal distances, which, nevertheless, are not compatible with a uniform phasing of the nucleosomes with the AGM AS repeats
Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition
Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarly on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a ‘trapping’ mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these ‘ideal’ adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica (‘ideal’ trapping) and on glass (‘ideal’ equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions
Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution
The conformations of supercoiled (sc) DNA and linear DNA bound to polylysine (PL)-coated mica were investigated by scanning force microscopy (SFM) in solution. From the polymer statistical analysis of linear DNA, we could distinguish between re-arrangements or trapping of the DNA on the surface. Conditions of re-arrangements to an almost equilibrated state can be achieved at appropriate PL surface concentrations. We could show that the ability of re-arrangements depends on the salt concentration of the adsorption/imaging buffer. Comparing the statistical analysis of the linear DNA with SFM images of scDNA suggested that irregular scDNA conformations are formed under conditions of trapping, whereas plectonemic structures are favoured under conditions of surface re-arrangements. Salt-dependent changes in the scDNA conformation over the range of 10–100 mM NaCl, as characterised by the parameters writhe and the superhelix radius r, are observable only under conditions that enable surface re-arrangements. The measured values of writhe suggest that the scDNA loses approximately one-half of the supercoils during the binding to the surface. At the same time r increases systematically with decreasing writhe, thus the scDNA topology remains determined by the constraints on supercoiling during the binding to PL-coated mica
Structural and Functional Insight into the Mechanism of Bacillus subtilis 6S-1 RNA Release from RNA Polymerase
Here we investigated the refolding of Bacillus subtilis 6S-1 RNA and its release from σA-RNA polymerase (σA-RNAP) in vitro using truncated and mutated 6S-1 RNA variants. Truncated 6S-1 RNAs, only consisting of the central bubble (CB) flanked by two short helical arms, can still traverse the mechanistic 6S RNA cycle in vitro despite ~10-fold reduced σA-RNAP affinity. This indicates that the RNA’s extended helical arms including the ‘−35′-like region are not required for basic 6S-1 RNA functionality. The role of the ‘central bubble collapse helix’ (CBCH) in pRNA-induced refolding and release of 6S-1 RNA from σA-RNAP was studied by stabilizing mutations. This also revealed base identities in the 5’-part of the CB (5’-CB), upstream of the pRNA transcription start site (nt 40), that impact ground state binding of 6S-1 RNA to σA-RNAP. Stabilization of the CBCH by the C44/45 double mutation shifted the pRNA length pattern to shorter pRNAs and, combined with a weakened P2 helix, resulted in more effective release from RNAP. We conclude that formation of the CBCH supports pRNA-induced 6S-1 RNA refolding and release. Our mutational analysis also unveiled that formation of a second short hairpin in the 3′-CB is detrimental to 6S-1 RNA release. Furthermore, an LNA mimic of a pRNA as short as 6 nt, when annealed to 6S-1 RNA, retarded the RNA’s gel mobility and interfered with σA-RNAP binding. This effect incrementally increased with pLNA 7- and 8-mers, suggesting that restricted conformational flexibility introduced into the 5’-CB by base pairing with pRNAs prevents 6S-1 RNA from adopting an elongated shape. Accordingly, atomic force microscopy of free 6S-1 RNA versus 6S-1:pLNA 8- and 14-mer complexes revealed that 6S-1:pRNA hybrid structures, on average, adopt a more compact structure than 6S-1 RNA alone. Overall, our findings also illustrate that the wild-type 6S-1 RNA sequence and structure ensures an optimal balance of the different functional aspects involved in the mechanistic cycle of 6S-1 RNA