15 research outputs found

    EXPERIENCIA EDUCATIVA : TALLER DE RECURSOS NATURALES II

    Get PDF
    El Taller de Recursos Naturales II (TRN II) se desarrolla durante el 2do cuatrimestre del segundo año de Agronomía. La información obtenida por los alumnos es utilizada en el Taller de Producción Vegetal en el 4to Año. De acuerdo a la estructura y lineamientos del Plan de Estudios, el TRN II integra actividades de las asignaturas dictadas en ese cuatrimestre como: Propiedades Edáficas y Fertilidad, Fisiología Vegetal, Genética Básica y Aplicada y Agrometeorología, además de Ecología y Zoología Agrícola, asignaturas de tercero y cuarto año respectivamente. Tiene como objetivo conducir al alumno hacia una compresión global de los factores que afectan el crecimiento de las plantas con el fin de mantener o aumentar la producción, dentro del marco de una agricultura sustentable. Finaliza con una puesta en común donde se interpretan los resultados en términos ecofisiológicos y de interacción genotipo-ambiente, utilizando información obtenida de las demás asignaturas. Así, otorga a los futuros profesionales la capacidad de analizar los conocimientos adquiridos a campo y en el laboratorio, a la luz de los factores investigados durante el desarrollo del Taller

    Streptococcus Pneumoniae coinfection is correlated with the severity of H1N1 pandemic Influenza

    Get PDF
    Fil: Palacios, Gustavo. Columbia University. Center for Infection and Immunity; Estados Unidos.Fil: Hornig, Mady. Columbia University. Center for Infection and Immunity; Estados Unidos.Fil: Cisterna, Daniel. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Savji, Nazir. Columbia University. Center for Infection and Immunity; Estados Unidos.Fil: Bussetti, Ana Valeria. Columbia University. Center for Infection and Immunity; Estados Unidos.Fil: Kapoor, Vishal. Columbia University. Center for Infection and Immunity; Estados Unidos.Fil: Hui, Jeffrey. Columbia University. Center for Infection and Immunity; Estados Unidos.Fil: Tokarz, Rafal. Columbia University. Center for Infection and Immunity; Estados Unidos.Fil: Briese, Thomas. Columbia University. Center for Infection and Immunity; Estados Unidos.Fil: Baumeister, Elsa. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas; Argentina.Fil: Lipkin, W. Ian. Columbia University. Center for Infection and Immunity; Estados Unidos.Background Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR) of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease. Methods/Principal Findings We examined nasopharyngeal swab samples (NPS) from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20) or hospitalization (n = 19); 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%), including Streptococcus pneumoniae (n = 62); Haemophilus influenzae (n = 104); human respiratory syncytial virus A (n = 11) and B (n = 1); human rhinovirus A (n = 1) and B (n = 4); human coronaviruses 229E (n = 1) and OC43 (n = 2); Klebsiella pneumoniae (n = 2); Acinetobacter baumannii (n = 2); Serratia marcescens (n = 1); and Staphylococcus aureus (n = 35) and methicillin-resistant S. aureus (MRSA, n = 6). The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0.0004). In subjects 6 to 55 years of age, the adjusted odds ratio (OR) of severe disease in the presence of S. pneumoniae was 125.5 (95% confidence interval [CI], 16.95, 928.72; p<0.0001). Conclusions/Significance The association of S. pneumoniae with morbidity and mortality is established in the current and previous influenza pandemics. However, this study is the first to demonstrate the prognostic significance of non-invasive antemortem diagnosis of S. pneumoniae infection and may provide insights into clinical management

    Streptococcus pneumoniae Coinfection Is Correlated with the Severity of H1N1 Pandemic Influenza

    Get PDF
    Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR) of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease.We examined nasopharyngeal swab samples (NPS) from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20) or hospitalization (n = 19); 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%), including Streptococcus pneumoniae (n = 62); Haemophilus influenzae (n = 104); human respiratory syncytial virus A (n = 11) and B (n = 1); human rhinovirus A (n = 1) and B (n = 4); human coronaviruses 229E (n = 1) and OC43 (n = 2); Klebsiella pneumoniae (n = 2); Acinetobacter baumannii (n = 2); Serratia marcescens (n = 1); and Staphylococcus aureus (n = 35) and methicillin-resistant S. aureus (MRSA, n = 6). The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0.0004). In subjects 6 to 55 years of age, the adjusted odds ratio (OR) of severe disease in the presence of S. pneumoniae was 125.5 (95% confidence interval [CI], 16.95, 928.72; p<0.0001).The association of S. pneumoniae with morbidity and mortality is established in the current and previous influenza pandemics. However, this study is the first to demonstrate the prognostic significance of non-invasive antemortem diagnosis of S. pneumoniae infection and may provide insights into clinical management

    Heart and Skeletal Muscle Inflammation of Farmed Salmon Is Associated with Infection with a Novel Reovirus

    Get PDF
    Atlantic salmon (Salmo salar L.) mariculture has been associated with epidemics of infectious diseases that threaten not only local production, but also wild fish coming into close proximity to marine pens and fish escaping from them. Heart and skeletal muscle inflammation (HSMI) is a frequently fatal disease of farmed Atlantic salmon. First recognized in one farm in Norway in 1999[1], HSMI was subsequently implicated in outbreaks in other farms in Norway and the United Kingdom[2]. Although pathology and disease transmission studies indicated an infectious basis, efforts to identify an agent were unsuccessful. Here we provide evidence that HSMI is associated with infection with piscine reovirus (PRV). PRV is a novel reovirus identified by unbiased high throughput DNA sequencing and a bioinformatics program focused on nucleotide frequency as well as sequence alignment and motif analyses. Formal implication of PRV in HSMI will require isolation in cell culture and fulfillment of Koch's postulates, or prevention or modification of disease through use of specific drugs or vaccines. Nonetheless, as our data indicate that a causal relationship is plausible, measures must be taken to control PRV not only because it threatens domestic salmon production but also due to the potential for transmission to wild salmon populations
    corecore