155 research outputs found

    A mathematical model of the metabolic and perfusion effects on cortical spreading depression

    Get PDF
    Cortical spreading depression (CSD) is a slow-moving ionic and metabolic disturbance that propagates in cortical brain tissue. In addition to massive cellular depolarization, CSD also involves significant changes in perfusion and metabolism -- aspects of CSD that had not been modeled and are important to traumatic brain injury, subarachnoid hemorrhage, stroke, and migraine. In this study, we develop a mathematical model for CSD where we focus on modeling the features essential to understanding the implications of neurovascular coupling during CSD. In our model, the sodium-potassium--ATPase, mainly responsible for ionic homeostasis and active during CSD, operates at a rate that is dependent on the supply of oxygen. The supply of oxygen is determined by modeling blood flow through a lumped vascular tree with an effective local vessel radius that is controlled by the extracellular potassium concentration. We show that during CSD, the metabolic demands of the cortex exceed the physiological limits placed on oxygen delivery, regardless of vascular constriction or dilation. However, vasoconstriction and vasodilation play important roles in the propagation of CSD and its recovery. Our model replicates the qualitative and quantitative behavior of CSD -- vasoconstriction, oxygen depletion, extracellular potassium elevation, prolonged depolarization -- found in experimental studies. We predict faster, longer duration CSD in vivo than in vitro due to the contribution of the vasculature. Our results also help explain some of the variability of CSD between species and even within the same animal. These results have clinical and translational implications, as they allow for more precise in vitro, in vivo, and in silico exploration of a phenomenon broadly relevant to neurological disease.Comment: 17 pages including 9 figures, accepted by PLoS On

    Validation of the western ontario rotator cuff index in patients with arthroscopic rotator cuff repair: A study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arthroscopic rotator cuff repair is described as being a successful procedure. These results are often derived from clinical general shoulder examinations, which are then classified as 'excellent', 'good', 'fair' or 'poor'. However, the cut-off points for these classifications vary and sometimes modified scores are used.</p> <p>Arthroscopic rotator cuff repair is performed to improve quality of life. Therefore, disease specific health-related quality of life patient-administered questionnaires are needed. The WORC is a quality of life questionnaire designed for patients with disorders of the rotator cuff. The score is validated for rotator cuff disease, but not for rotator cuff repair specifically.</p> <p>The aim of this study is to investigate reliability, validity and responsiveness of WORC in patients undergoing arthroscopic rotator cuff repair.</p> <p>Methods/Design</p> <p>An approved translation of the WORC into Dutch is used. In this prospective study three groups of patients are used: 1. Arthroscopic rotator cuff repair; 2. Disorders of the rotator cuff without rupture; 3. Shoulder instability.</p> <p>The WORC, SF-36 and the Constant Score are obtained twice before therapy is started to measure reliability and validity. Responsiveness is tested by obtaining the same tests after therapy.</p

    Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

    Full text link

    Sympathetic nerves reduce cerebral blood flow during hypoxia in awake rabbits

    No full text

    Unilateral and bilateral sympathetic effects on cerebral blood flow during normocapnia

    No full text

    Hypercapnia potentiates renal vasoconstriction during hemorrhagic hypotension in awake rabbits

    No full text
    corecore