2,328 research outputs found

    A stochastical model for periodic domain structuring in ferroelectric crystals

    Get PDF
    A stochastical description is applied in order to understand how ferroelectric structures can be formed. The predictions are compared with experimental data of the so-called electrical fixing: Domains are patterned in photorefractive lithium niobate crystals by the combination of light-induced space-charge fields with externally applied electrical fields. In terms of our stochastical model the probability for domain nucleation is modulated according to the sum of external and internal fields. The model describes the shape of the domain pattern as well as the effective degree of modulation

    Role of cerium in lithium niobate for holographic recording

    Get PDF
    Cerium-doped lithium niobate crystals are tested for holographic recording. A photochromic effect is observed in crystals doped with cerium and manganese. But two-center recording in the sample is not as effective as in iron and manganese doubly doped crystals. Photocurrent measurements in cerium and iron singly doped crystals indicate that the photovoltaic constant in the cerium-doped crystal is only one third of that of the iron-doped one. This is the main reason accounting for the low sensitivity of cerium-doped lithium niobate crystals. However, in the diffusion dominated case, i.e., for reflection geometry, cerium-doped lithium niobate may give a strong effect

    Civil Procedure

    Get PDF

    Trapping of dielectric particles with light-induced space-charge fields

    Get PDF
    Light-induced space-charge fields in lithium niobate crystals are used to trap and manipulate dielectric particles on the surface of such crystals. Without any external voltage source, strong field gradients are present in the proximity of the crystal surface. These are used to trap particles with diameters in the range between 100 nm and some tens of micrometers

    The Making of Cloud Applications An Empirical Study on Software Development for the Cloud

    Full text link
    Cloud computing is gaining more and more traction as a deployment and provisioning model for software. While a large body of research already covers how to optimally operate a cloud system, we still lack insights into how professional software engineers actually use clouds, and how the cloud impacts development practices. This paper reports on the first systematic study on how software developers build applications in the cloud. We conducted a mixed-method study, consisting of qualitative interviews of 25 professional developers and a quantitative survey with 294 responses. Our results show that adopting the cloud has a profound impact throughout the software development process, as well as on how developers utilize tools and data in their daily work. Among other things, we found that (1) developers need better means to anticipate runtime problems and rigorously define metrics for improved fault localization and (2) the cloud offers an abundance of operational data, however, developers still often rely on their experience and intuition rather than utilizing metrics. From our findings, we extracted a set of guidelines for cloud development and identified challenges for researchers and tool vendors

    FLARE: Fingerprinting Deep Reinforcement Learning Agents using Universal Adversarial Masks

    Full text link
    We propose FLARE, the first fingerprinting mechanism to verify whether a suspected Deep Reinforcement Learning (DRL) policy is an illegitimate copy of another (victim) policy. We first show that it is possible to find non-transferable, universal adversarial masks, i.e., perturbations, to generate adversarial examples that can successfully transfer from a victim policy to its modified versions but not to independently trained policies. FLARE employs these masks as fingerprints to verify the true ownership of stolen DRL policies by measuring an action agreement value over states perturbed via such masks. Our empirical evaluations show that FLARE is effective (100% action agreement on stolen copies) and does not falsely accuse independent policies (no false positives). FLARE is also robust to model modification attacks and cannot be easily evaded by more informed adversaries without negatively impacting agent performance. We also show that not all universal adversarial masks are suitable candidates for fingerprints due to the inherent characteristics of DRL policies. The spatio-temporal dynamics of DRL problems and sequential decision-making process make characterizing the decision boundary of DRL policies more difficult, as well as searching for universal masks that capture the geometry of it.Comment: Will appear in the proceedings of ACSAC 2023; 13 pages, 5 figures, 7 table

    Connections between the stability of a Poincare map and boundedness of certain associate sequences

    Get PDF
    Let m≥1m\ge 1 and N≥2N\ge 2 be two natural numbers and let U={U(p,q)}p≥q≥0{\mathcal{U}}=\{U(p, q)\}_{p\ge q\ge 0} be the NN-periodic discrete evolution family of m×mm\times m matrices, having complex scalars as entries, generated by L(Cm){\mathcal{L}}(\mathbb{C}^m)-valued, NN-periodic sequence of m×mm\times m matrices (An).(A_n). We prove that the solution of the following discrete problem yn+1=Anyn+eiμnb,n∈Z+,y0=0y_{n+1}=A_ny_n+e^{i\mu n}b,\quad n\in\mathbb{Z}_+,\quad y_0=0 is bounded for each μ∈R\mu\in\mathbb{R} and each mm-vector bb if the Poincare map U(N,0)U(N, 0) is stable. The converse statement is also true if we add a new assumption to the boundedness condition. This new assumption refers to the invertibility for each μ∈R\mu\in\mathbb{R} of the matrix Vμ:=∑ν=1NU(N,ν)eiμν.V_{\mu}:=\sum\nolimits_{\nu=1}^NU(N, \nu)e^{i\mu \nu}. By an example it is shown that the assumption on invertibility cannot be removed. Finally, a strong variant of Barbashin's type theorem is proved

    Advancing the Right to Health Through Global Organizations: The Potential Role of a Framework Convention on Global Health

    Get PDF
    Organizations, partnerships, and alliances form the building blocks of global governance. Global health organizations thus have the potential to play a formative role in determining the extent to which people are able to realize their right to health. This article examines how major global health organizations, such as WHO, the Global Fund to Fight AIDS, TB and Malaria, UNAIDS, and GAVI approach human rights concerns, including equality, accountability, and inclusive participation. We argue that organizational support for the right to health must transition from ad hoc and partial to permanent and comprehensive. Drawing on the literature and our knowledge of global health organizations, we offer good practices that point to ways in which such agencies can advance the right to health, covering nine areas: 1) participation and representation in governance processes; 2) leadership and organizational ethos; 3) internal policies; 4) norm-setting and promotion; 5) organizational leadership through advocacy and communication; 6) monitoring and accountability; 7) capacity building; 8) funding policies; and 9) partnerships and engagement. In each of these areas, we offer elements of a proposed Framework Convention on Global Health (FCGH), which would commit state parties to support these standards through their board membership and other interactions with these agencies. We also explain how the FCGH could incorporate these organizations into its overall financing framework, initiate a new forum where they collaborate with each other, as well as organizations in other regimes, to advance the right to health, and ensure sufficient funding for right to health capacity building. We urge major global health organizations to follow the leadership of the UN Secretary-General and UNAIDS to champion the FCGH. It is only through a rights-based approach, enshrined in a new Convention, that we can expect to achieve health for all in our lifetimes

    Poling effect on distribution of quenched random fields in a uniaxial relaxor ferroelectric

    Full text link
    The frequency dependence of the dielectric permitivity's maximum has been studied for poled and unpoled doped relaxor strontium barium niobate Sr0.61Ba0.39Nb2O6:Cr3+Sr_{0.61}Ba_{0.39}Nb_{2}O_{6}:Cr^{3+} (SBN-61:Cr). In both cases the maximum found is broad and the frequency dispersion is strong. The present view of random fields compensation in the unpoled sample is not suitable for explaining this experimental result. We propose a new mechanism where the dispersion of quenched random electric fields, affecting the nanodomains, is minimized after poling. We test our proposal by numerical simulations on a random field Ising model. Results obtained are in agreement with the polarization's measurements presented by Granzow et al. [Phys. Rev. Lett {\bf 92}, 065701 (2004)].Comment: 7 pages, 4 figure
    • …
    corecore