7 research outputs found

    Cryptochrome 1 is modulated by blue light in human keratinocytes and exerts positive impact on human hair growth

    No full text
    Photoactivation of cryptochrome-family proteins by blue light is a well-established reaction regulating physiology of plants, fungi, bacteria, insects and birds, while impact of blue light on cryptochrome synthesis and/or activity in human non-visual cells remains unknown. Here, we show that 453 nm blue light induces cryptochrome 1 (CRY1) accumulation in human keratinocytes and the hair follicle. CRY1 is prominently expressed in the human anagen hair follicle, including epithelial stem cells. Specific silencing of CRY1 promotes catagen, while stimulation of CRY1 by KL001 prolongs anagen ex vivo by altering the expression of genes involved in apoptosis and proliferation. Together, our study identifies a role for CRY1 in sustaining human hair growth. Previously, we demonstrated positive effects of 453 nm blue light on hair growth ex vivo. Taken all together, our study suggests that CRY1 might mediate blue light-dependent positive effects on hair growth

    Phenotype and distribution of immature T cells in adenoids and tonsils.

    No full text
    <p>A: macroscopic appearance of a representative sample of tonsils and adenoidal tissue. B: Low power (4x) image of a fixed and embedded adenoid, stained with Hematoxylin and Eosin. The brackets highlights the boundary between the stroma and the secondary lymphoid tissue (star  =  germinal center) where darker staining small lymphocytes gather. Left lower corner inset shows TdT+(brown) cells in sheets in an immunostained serial section (4x). Upper right inset: H&E detail of the bracketed area (40x). C-H: frozen adenoid serial sections (4x) stained for CD1a (C), CD1b (D), TE-7 (E), NGFR/p75 (F), and the anti thymic epithelium reagents RFD4 (G) and TE-4 (H) (brown, no counterstain). The insets in C, E and F show a magnified detail of the area occupied by immature T cells (40x)(also indicated by brackets). Star  =  germinal center. The insets in G and H show low power images (4x). The arrows highlight positive surface epithelium. I: frozen adenoid serial sections (40x) double stained for negative controls, TdT and CD1a, CD4, CD8, CD79a and surrogate light chain (SL; inset). Note the doublestaining in the upper half field, except for CD79a and SL. The last image is a double immunofluorescence image showing largely mutually exclusive distribution of Pax5 and TdT in adenoids in a fixed and embedded section. K: fixed and embedded tonsil section showing coexpression of TdT and Pax5 in immature B cell precursors.</p

    Distinct Effects of Heparin and Interleukin-4 Functionalization on Macrophage Polarization and In Situ Arterial Tissue Regeneration Using Resorbable Supramolecular Vascular Grafts in Rats

    Get PDF
    Two of the greatest challenges for successful application of small-diameter in situ tissue-engineered vascular grafts are 1) preventing thrombus formation and 2) harnessing the inflammatory response to the graft to guide functional tissue regeneration. This study evaluates the in vivo performance of electrospun resorbable elastomeric vascular grafts, dual-functionalized with anti-thrombogenic heparin (hep) and anti-inflammatory interleukin 4 (IL-4) using a supramolecular approach. The regenerative capacity of IL-4/hep, hep-only, and bare grafts is investigated as interposition graft in the rat abdominal aorta, with follow-up at key timepoints in the healing cascade (1, 3, 7 days, and 3 months). Routine analyses are augmented with Raman microspectroscopy, in order to acquire the local molecular fingerprints of the resorbing scaffold and developing tissue. Thrombosis is found not to be a confounding factor in any of the groups. Hep-only-functionalized grafts resulted in adverse tissue remodeling, with cases of local intimal hyperplasia. This is negated with the addition of IL-4, which promoted M2 macrophage polarization and more mature neotissue formation. This study shows that with bioactive functionalization, the early inflammatory response can be modulated and affect the composition of neotissue. Nevertheless, variability between graft outcomes is observed within each group, warranting further evaluation in light of clinical translation

    Ultrastructural Characteristics of Myocardial Reperfusion Injury and Effect of Selective Intracoronary Hypothermia: An Observational Study in Isolated Beating Porcine Hearts

    Get PDF
    In acute myocardial infarction (AMI), myocardial reperfusion injury may undo part of the recovery after revascularization of the occluded coronary artery. Selective intracoronary hypothermia is a novel method aimed at reducing myocardial reperfusion injury, but its presumed protective effects in AMI still await further elucidation. This proof-of-concept study assesses the potential protective effects of selective intracoronary hypothermia in an ex-vivo, isolated beating heart model of AMI. In four isolated Langendorff perfused beating pig hearts, an anterior wall myocardial infarction was created by inflating a balloon in the mid segment of the left anterior descending (LAD) artery. After one hour, two hearts were treated with selective intracoronary hypothermia followed by normal reperfusion (cooled hearts). In the other two hearts, the balloon was deflated after one hour, allowing normal reperfusion (control hearts). Biopsies for histologic and electron microscopic evaluation were taken from the myocardium at risk at different time points: before occlusion (t = BO); 5 minutes before reperfusion (t = BR); and 10 minutes after reperfusion (t = AR). Electron microscopic analysis was performed to evaluate the condition of the mitochondria. Histological analyses included evaluation of sarcomeric collapse and intramyocardial hematoma. Electron microscopic analysis revealed intact mitochondria in the hypothermia treated hearts compared to the control hearts where mitochondria were more frequently damaged. No differences in the prespecified histological parameters were observed between cooled and control hearts at t = AR. In the isolated beating porcine heart model of AMI, reperfusion was associated with additional myocardial injury beyond ischemic injury. Selective intracoronary hypothermia preserved mitochondrial integrity compared to nontreated controls
    corecore