228 research outputs found

    Dynamic scaling in the vicinity of the Luttinger liquid fixed point

    Full text link
    We calculate the single-particle spectral function A (k, omega) of a one-dimensional Luttinger liquid by means of a functional renormalization group (RG) approach. Given an infrared energy cutoff Lambda = Lambda_0 e^{- l}, our approach yields the spectral function in the scaling form, A_{\Lambda} (k_F + p, omega) = tau Z_l tilde{A}_l (p xi, omega tau), where k_F is the Fermi momentum, Z_l is the wave-function renormalization factor, tau = 1 / \Lambda is the time scale and xi = v_F / \Lambda is the length scale associated with Lambda. At the Luttinger liquid fixed point (l rightarrow infty) our RG result for A (k, omega) exhibits the correct anomalous scaling properties, and for k = \pm k_F agrees exactly with the well-known bosonization result at weak coupling. Our calculation demonstrates that the field rescaling is essential for obtaining the crossover from Fermi liquid behavior to Luttinger liquid behavior from a truncation of the hierarchy of exact RG flow equations as the infrared cutoff is reduced.Comment: 15 pages, 5 figure

    Radiative Transfer in Obliquely Illuminated Accretion Disks

    Full text link
    The illumination of an accretion disk around a black hole or neutron star by the central compact object or the disk itself often determines its spectrum, stability, and dynamics. The transport of radiation within the disk is in general a multi-dimensional, non-axisymmetric problem, which is challenging to solve. Here, I present a method of decomposing the radiative transfer equation that describes absorption, emission, and Compton scattering in an obliquely illuminated disk into a set of four one-dimensional transfer equations. I show that the exact calculation of the ionization balance and radiation heating of the accretion disk requires the solution of only one of the one-dimensional equations, which can be solved using existing numerical methods. I present a variant of the Feautrier method for solving the full set of equations, which accounts for the fact that the scattering kernels in the individual transfer equations are not forward-backward symmetric. I then apply this method in calculating the albedo of a cold, geometrically thin accretion disk.Comment: 16 pages, 3 figures; to appear in The Astrophysical Journa

    Iceberg topography and volume classification using TanDEM-X interferometry

    Get PDF
    Icebergs in polar regions affect water salinity, alter marine habitats, and impose serious hazards on maritime operations and navigation. These impacts mainly depend on the iceberg volume, which remains an elusive parameter to measure. We investigate the capability of TanDEM-X bistatic single-pass synthetic aperture radar interferometry (InSAR) to derive iceberg subaerial morphology and infer total volume. We cross-verify InSAR results with Operation IceBridge (OIB) data acquired near Wordie Bay, Antarctica, as part of the OIB/TanDEM-X Antarctic Science Campaign (OTASC). While icebergs are typically classified according to size based on length or maximum height, we develop a new volumetric classification approach for applications where iceberg volume is relevant. For icebergs with heights exceeding 5 m, we find iceberg volumes derived from TanDEM-X and OIB data match within 7 %. We also derive a range of possible iceberg keel depths relevant to grounding and potential impacts on subsea installations. These results suggest that TanDEM-X could pave the way for future single-pass interferometric systems for scientific and operational iceberg mapping and classification based on iceberg volume and keel depth

    Persistent currents in mesoscopic rings: A numerical and renormalization group study

    Full text link
    The persistent current in a lattice model of a one-dimensional interacting electron system is systematically studied using a complex version of the density matrix renormalization group algorithm and the functional renormalization group method. We mainly focus on the situation where a single impurity is included in the ring penetrated by a magnetic flux. Due to the interplay of the electron-electron interaction and the impurity the persistent current in a system of N lattice sites vanishes faster then 1/N. Only for very large systems and large impurities our results are consistent with the bosonization prediction obtained for an effective field theory. The results from the density matrix renormalization group and the functional renormalization group agree well for interactions as large as the band width, even though as an approximation in the latter method the flow of the two-particle vertex is neglected. This confirms that the functional renormalization group method is a very powerful tool to investigate correlated electron systems. The method will become very useful for the theoretical description of the electronic properties of small conducting ring molecules.Comment: 9 pages, 8 figures include

    Seizure protein 6 controls glycosylation and trafficking of kainate receptor subunits GluK2 and GluK3

    Get PDF
    Seizure protein 6 (SEZ6) is required for the development and maintenance of the nervous system, is a major substrate of the protease BACE1 and is linked to Alzheimer's disease (AD) and psychiatric disorders, but its molecular functions are not well understood. Here, we demonstrate that SEZ6 controls glycosylation and cell surface localization of kainate receptors composed of GluK2/3 subunits. Loss of SEZ6 reduced surface levels of GluK2/3 in primary neurons and reduced kainate-evoked currents in CA1 pyramidal neurons in acute hippocampal slices. Mechanistically, loss of SEZ6 in vitro and in vivo prevented modification of GluK2/3 with the human natural killer-1 (HNK-1) glycan, a modulator of GluK2/3 function. SEZ6 interacted with GluK2 through its ectodomain and promoted post-endoplasmic reticulum transport of GluK2 in the secretory pathway in heterologous cells and primary neurons. Taken together, SEZ6 acts as a new trafficking factor for GluK2/3. This novel function may help to better understand the role of SEZ6 in neurologic and psychiatric diseases

    Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

    Get PDF
    The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D.This work was funded by the EU-FP7 project BLUEPRINT (282510) and the Wellcome Trust (99148). We thank all twins for taking part in this study; Kerra Pearce and Mark Kristiansen (UCL Genomics) for processing the Illumina Infinium HumanMethylation450 BeadChips; Rasmus Bennet for technical assistance; and Laura Phipps for proofreading the manuscript. The BMBF Pediatric Diabetes Biobank recruits patients from the National Diabetes Patient Documentation System (DPV), and is financed by the German Ministry of Education and Research within the German Competence Net Diabetes Mellitus (01GI1106 and 01GI1109B). It was integrated into the German Center for Diabetes Research in January 2015. We thank the Swedish Research Council and SUS Funds for support. We gratefully acknowledge the participation of all NIHR Cambridge BioResource volunteers, and thank the Cambridge BioResource staff for their help with volunteer recruitment. We thank members of the Cambridge BioResource SAB and Management Committee for their support of our study and the NIHR Cambridge Biomedical Research Centre for funding. The Cardiovascular Epidemiology Unit is supported by the UK Medical Research Council (G0800270), BHF (SP/09/002), and NIHR Cambridge Biomedical Research Centre. Research in the Ouwehand laboratory is supported by the NIHR, BHF (PG-0310-1002 and RG/09/12/28096) and NHS Blood and Transplant. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is supported by the BHF Cambridge Centre of Excellence (RE/13/6/30180). A.D., E.L., L.C. and P.F. receive additional support from the European Molecular Biology Laboratory. A.K.S. is supported by an ADA Career Development Award (1-14-CD-17). B.O.B. and R.D.L. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) and European Federation for the Study of Diabetes, respectively

    Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease

    Get PDF
    Mitochondria contribute to shape intraneuronal Ca2+ signals. Excessive Ca2+ taken up by mitochondria could lead to cell death. Amyloid beta (A beta) causes cytosolic Ca2+ overload, but the effects of A beta on mitochondrial Ca2+ levels in Alzheimer's disease (AD) remain unclear. Using a ratiometric Ca2+ indicator targeted to neuronal mitochondria and intravital multiphoton microscopy, we find increased mitochondrial Ca2+ levels associated with plaque deposition and neuronal death in a transgenic mouse model of cerebral beta -amyloidosis. Naturally secreted soluble A beta applied onto the healthy brain increases Ca2+ concentration in mitochondria, which is prevented by blockage of the mitochondrial calcium uniporter. RNA-sequencing from post-mortem AD human brains shows downregulation in the expression of mitochondrial influx Ca2+ transporter genes, but upregulation in the genes related to mitochondrial Ca2+ efflux pathways, suggesting a counteracting effect to avoid Ca2+ overload. We propose lowering neuronal mitochondrial Ca2+ by inhibiting the mitochondrial Ca2+ uniporter as a novel potential therapeutic target against AD. Calvo-Rodriguez et al. show elevated calcium levels in neuronal mitochondria in a mouse model of cerebral beta -amyloidosis after plaque deposition, which precede rare neuron death events in this model. The mechanism involves toxic extracellular A beta oligomers and the mitochondrial calcium uniporter

    Identification of tetrahydrocarbazoles as novel multifactorial drug candidates for treatment of Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most frequent cause of dementia. To date, there are only a few approved drugs for AD, which show little or no effect on disease progression. Impaired intracellular calcium homeostasis is believed to occur early in the cascade of events leading to AD. Here, we examined the possibility of normalizing the disrupted calcium homeostasis in the endoplasmic reticulum (ER) store as an innovative approach for AD drug discovery. High-throughput screening of a small-molecule compound library led to the identification of tetrahydrocarbazoles, a novel multifactorial class of compounds that can normalize the impaired ER calcium homeostasis. We found that the tetrahydrocarbazole lead structure, first, dampens the enhanced calcium release from ER in HEK293 cells expressing familial Alzheimer's disease (FAD)-linked presenilin 1 mutations. Second, the lead structure also improves mitochondrial function, measured by increased mitochondrial membrane potential. Third, the same lead structure also attenuates the production of amyloid-beta (A beta) peptides by decreasing the cleavage of amyloid precursor protein (APP) by beta-secretase, without notably affecting alpha- and gamma-secretase cleavage activities. Considering the beneficial effects of tetrahydrocarbazoles addressing three key pathological aspects of AD, these compounds hold promise for the development of potentially effective AD drug candidates

    Lipocalin 2 modulates the cellular response to amyloid beta

    Get PDF
    The production, accumulation and aggregation of amyloid beta (Aß) peptides in Alzheimer's disease (AD) are influenced by different modulators. Among these are iron and iron-related proteins, given their ability to modulate the expression of the amyloid precursor protein and to drive Aß aggregation. Herein, we describe that lipocalin 2 (LCN2), a mammalian acute-phase protein involved in iron homeostasis, is highly produced in response to Aß1-42 by choroid plexus epithelial cells and astrocytes, but not by microglia or neurons. Although Aß1-42 stimulation decreases the dehydrogenase activity and survival of wild-type astrocytes, astrocytes lacking the expression of Lcn2 are not affected. This protection results from a lower expression of the proapoptotic gene Bim and a decreased inflammatory response. Altogether, these findings show that Aß toxicity to astrocytes requires LCN2, which represents a novel mechanism to target when addressing AD.Cell Death and Differentiation advance online publication, 23 May 2014; doi:10.1038/cdd.2014.68.We thank Dr. Ioannis Sotiropoulos for reagents and comments. Sandro Da Mesquita and Ana Catarina Ferreira are recipients of PhD fellowships and Fernanda Marques is recipient of a postdoctoral fellowship by the Fundacao para a Ciencia e Tecnologia (FCT, Portugal)/FEDER. This work was supported by a grant from FCT/FEDER (EXPL/NEUOSD/2196/2013)

    In Vivo Expression Pattern of MICA and MICB and Its Relevance to Auto-Immunity and Cancer

    Get PDF
    Non-conventional MHC class I MIC molecules interact not with the TCR, but with NKG2D, a C-type lectin activatory receptor present on most NK, γδ and CD8+ αβ T cells. While this interaction is critical in triggering/calibrating the cytotoxic activity of these cells, the actual extent of its in vivo involvement, in man, in infection, cancer or autoimmunity, needs further assessment. The latter has gained momentum along with the reported expansion of peripheral CD4+CD28−NKG2D+ T cells in rheumatoid arthritis (RA). We first initiated to extend this report to a larger cohort of not only RA patients, but also those affected by systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). In RA and SS, this initial observation was further tested in target tissues: the joint and the salivary glands, respectively. In conclusion and despite occasional and indiscriminate expansion of the previously incriminated T cell subpopulation, no correlation could be observed between the CD4+CD28−NKG2D+ and auto-immunity. Moreover, in situ, the presence of NKG2D matched that of CD8+, but not that of CD4+ T cells. In parallel, a total body tissue scan of both MICA and MICB transcription clearly shows that despite original presumptions, and with the exception of the central nervous system, both genes are widely transcribed and therefore possibly translated and membrane-bound. Extending this analysis to a number of human tumors did not reveal a coherent pattern of expression vs. normal tissues. Collectively these data question previous assumptions, correlating a tissue-specific expression/induction of MIC in relevance to auto-immune or tumor processes
    • …
    corecore