5 research outputs found

    Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Get PDF
    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned

    Clinical utility of tibial motor and sensory nerve conduction studies with motor recording from the flexor hallucis brevis: a methodological and reliability study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Standard tibial motor nerve conduction measures are established with recording from the abductor hallucis. This technique is often technically challenging and clinicians have difficulty interpreting the information particularly in the short segment needed to assess focal tibial nerve entrapment at the medial ankle as occurs in posterior tarsal tunnel syndrome. The flexor hallucis brevis (FHB) has been described as an alternative site for recording tibial nerve function in those with posterior tarsal tunnel syndrome. Normative data has not been established for this technique. This pilot study describes the technique in detail. In addition we provide reference values for medial and lateral plantar orthodromic sensory measures and assessed intrarater reliability for all measures.</p> <p>Methods</p> <p>Eighty healthy female participants took part, and 39 returned for serial testing at 4 time points. Mean values ± SD were recorded for nerve conduction measures, and coefficient of variation as well as intraclass correlation coefficients (ICC) were calculated.</p> <p>Results</p> <p>Motor latency, amplitude and velocity values for the FHB were 4.1 ± 0.9 msec, 8.0 ± 3.0 mV and 45.6 ± 3.4 m/s, respectively. Sensory latencies, amplitudes, and velocities, respectively, were 2.8 ± 0.3 msec, 26.7 ± 10.1 μV, and 41.4 ± 3.5 m/s for the medial plantar nerve and 3.2 ± 0.5 msec, 13.3 ± 4.7 μV, and 44.3 ± 4.0 msec for the lateral plantar nerve. All values demonstrated significant ICC values (<it>P </it>≤ 0.007).</p> <p>Conclusion</p> <p>Motor recording from the FHB provides technically clear waveforms that allow for an improved ability to assess tibial nerve function in the short segments used to assess tarsal tunnel syndrome. The reported means will begin to establish normal values for this technique.</p

    Runoff sources and land cover change in the Amazon : an end-member mixing analysis from small watersheds

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 105 (2011): 7-18, doi:10.1007/s10533-011-9597-8.The flowpaths by which water moves from watersheds to streams has important consequences for the runoff dynamics and biogeochemistry of surface waters in the Amazon Basin. The clearing of Amazon forest to cattle pasture has the potential to change runoff sources to streams by shifting runoff to more surficial flow pathways. We applied end member mixing analysis (EMMA) to ten small watersheds throughout the Amazon in which solute composition of streamwater and groundwater, overland flow, soil solution, throughfall and rainwater were measured, largely as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia. We found a range in the extent to which streamwater samples fell within the mixing space determined by potential flowpath end members, suggesting that some water sources to streams were not sampled. The contribution of overland flow as a source of stream flow was greater in pasture watersheds than in forest watersheds of comparable size. Increases in overland flow contribution to pasture streams ranged in some cases from 0% in forest to 27 to 28% in pasture and were broadly consistent with results from hydrometric sampling of Amazon forest and pasture watersheds that indicate 17- to 18-fold increase in the overland flow contribution to stream flow in pastures. In forest, overland flow was an important contribution to stream flow (45 to 57%) in ephemeral streams where flows were dominated by stormflow. Overland flow contribution to stream flow decreased in importance with increasing watershed area, from 21 to 57% in forest and 60 to 89% in pasture watersheds 100 ha. Soil solution contributions to stream flow were similar across watershed area and groundwater inputs generally increased in proportion to decreases in overland flow. Application of EMMA across multiple watersheds indicated patterns across gradients of stream size and land cover that were consistent with patterns determined by detailed hydrometric sampling.This work was supported by National Science Foundation (DEB-0315656, DEB-0640661), the NASA LBA Program (NCC5-686, NCC5-69, NCC5-705, NNG066E88A) and by grants from Brazilian agencies FAPESP (03/13172-2) and CNPq (20199/2005-5)

    Aeta Magbukún of Mariveles: Traditional indigenous forest resource use practices and the sustainable economic development challenge in remote Philippine regions

    Get PDF
    The Aeta Magbukún of Mariveles are one of the least known and researched Indigenous peoples remaining on the fringe of the bay, and within the remaining forests in Bataan province on Luzon Island in the Philippines. This work describes the unique cultural systems and language of the Aeta Magbukún tribe in Biaan, Mariveles, and both the traditional forest resource use and the evolving new subsistence practices developed to adapt to the encroachment of non-Indigenous peoples onto ancestral lands. The Aeta's forest resource use practices are discussed from a sustainable Indigenous development context within unique socioeconomic, cultural, and environmental circumstances in Bataan
    corecore