8,429 research outputs found
The structure of classical extensions of quantum probability theory
On the basis of a suggestive definition of a classical extension of quantum mechanics in terms of statistical models, we prove that every such classical extension is essentially given by the so-called Misra–Bugajski reduction map. We consider how this map enables one to understand quantum mechanics as a reduced classical statistical theory on the projective Hilbert space as phase space and discuss features of the induced hidden-variable model. Moreover, some relevant technical results on the topology and Borel structure of the projective Hilbert space are reviewed
Approximating incompatible von Neumann measurements simultaneously
We study the problem of performing orthogonal qubit measurements
simultaneously. Since these measurements are incompatible, one has to accept
additional imprecision. An optimal joint measurement is the one with the least
possible imprecision. All earlier considerations of this problem have concerned
only joint measurability of observables, while in this work we also take into
account conditional state transformations (i.e., instruments). We characterize
the optimal joint instrument for two orthogonal von Neumann instruments as
being the Luders instrument of the optimal joint observable.Comment: 9 pages, 4 figures; v2 has a more extensive introduction + other
minor correction
The Standard Model of Quantum Measurement Theory: History and Applications
The standard model of the quantum theory of measurement is based on an
interaction Hamiltonian in which the observable-to-be-measured is multiplied
with some observable of a probe system. This simple Ansatz has proved extremely
fruitful in the development of the foundations of quantum mechanics. While the
ensuing type of models has often been argued to be rather artificial, recent
advances in quantum optics have demonstrated their prinicpal and practical
feasibility. A brief historical review of the standard model together with an
outline of its virtues and limitations are presented as an illustration of the
mutual inspiration that has always taken place between foundational and
experimental research in quantum physics.Comment: 22 pages, to appear in Found. Phys. 199
Approximate joint measurement of qubit observables through an Arthur-Kelly type model
We consider joint measurement of two and three unsharp qubit observables
through an Arthur-Kelly type joint measurement model for qubits. We investigate
the effect of initial state of the detectors on the unsharpness of the
measurement as well as the post-measurement state of the system. Particular
emphasis is given on a physical understanding of the POVM to PVM transition in
the model and entanglement between system and detectors.Two approaches for
characterizing the unsharpness of the measurement and the resulting measurement
uncertainty relations are considered.The corresponding measures of unsharpness
are connected for the case where both the measurements are equally unsharp. The
connection between the POVM elements and symmetries of the underlying
Hamiltonian of the measurement interaction is made explicit and used to perform
joint measurement in arbitrary directions. Finally in the case of three
observables we derive a necessary condition for the approximate joint
measurement and use it show the relative freedom available when the observables
are non-orthogonal.Comment: 22 pages; Late
Fire in a riparian shrub community: Postburn water relations in the Tamarix-Salix association along the lower Colorado River
Higher water potentials in recovering burned salt-cedar (Tamarix ramosissima) relative to unburned plants and the opposite situation in willow (Salix gooddingii) provide evidence that postfire water stress is reduced in the former but not the latter. Similarly, diurnal patterns of stomatal conductance in these taxa are consistent with the existence of more vigor in burned salt-cedar than willow. Plots of water potential and transpiration demonstrate that hydraulic efficiencies may contribute to differences in fire recovery
Low-density, one-dimensional quantum gases in a split trap
We investigate degenerate quantum gases in one dimension trapped in a
harmonic potential that is split in the centre by a pointlike potential. Since
the single particle eigenfunctions of such a system are known for all strengths
of the central potential, the dynamics for non-interacting fermionic gases and
low-density, strongly interacting bosonic gases can be investigated exactly
using the Fermi-Bose mapping theorem. We calculate the exact many-particle
ground-state wave-functions for both particle species, investigate soliton-like
solutions, and compare the bosonic system to the well-known physics of Bose
gases described by the Gross-Pitaevskii equation. We also address the
experimentally important questions of creation and detection of such states.Comment: 7 pages, 5 figure
Moment operators of the Cartesian margins of the phase space observables
The theory of operator integrals is used to determine the moment operators of
the Cartesian margins of the phase space observables generated by the mixtures
of the number states. The moments of the -margin are polynomials of the
position operator and those of the -margin are polynomials of the momentum
operator.Comment: 14 page
Classical world arising out of quantum physics under the restriction of coarse-grained measurements
Conceptually different from the decoherence program, we present a novel
theoretical approach to macroscopic realism and classical physics within
quantum theory. It focuses on the limits of observability of quantum effects of
macroscopic objects, i.e., on the required precision of our measurement
apparatuses such that quantum phenomena can still be observed. First, we
demonstrate that for unrestricted measurement accuracy no classical description
is possible for arbitrarily large systems. Then we show for a certain time
evolution that under coarse-grained measurements not only macrorealism but even
the classical Newtonian laws emerge out of the Schroedinger equation and the
projection postulate.Comment: 4 pages, 1 figure, second revised and published versio
Dark-Bright Solitons in Inhomogeneous Bose-Einstein Condensates
We investigate dark-bright vector solitary wave solutions to the coupled
non-linear Schr\"odinger equations which describe an inhomogeneous two-species
Bose-Einstein condensate. While these structures are well known in non-linear
fiber optics, we show that spatial inhomogeneity strongly affects their motion,
stability, and interaction, and that current technology suffices for their
creation and control in ultracold trapped gases. The effects of controllably
different interparticle scattering lengths, and stability against
three-dimensional deformations, are also examined.Comment: 5 pages, 5 figure
- …