14,957 research outputs found
On the Sharpness and Bias of Quantum Effects
The question of quantifying the sharpness (or unsharpness) of a quantum
mechanical effect is investigated. Apart from sharpness, another property,
bias, is found to be relevant for the joint measurability or coexistence of two
effects. Measures of bias will be defined and examples given.Comment: Substantially expanded version, with new results and some proofs
correcte
The Standard Model of Quantum Measurement Theory: History and Applications
The standard model of the quantum theory of measurement is based on an
interaction Hamiltonian in which the observable-to-be-measured is multiplied
with some observable of a probe system. This simple Ansatz has proved extremely
fruitful in the development of the foundations of quantum mechanics. While the
ensuing type of models has often been argued to be rather artificial, recent
advances in quantum optics have demonstrated their prinicpal and practical
feasibility. A brief historical review of the standard model together with an
outline of its virtues and limitations are presented as an illustration of the
mutual inspiration that has always taken place between foundational and
experimental research in quantum physics.Comment: 22 pages, to appear in Found. Phys. 199
The Yagita invariant of symplectic groups of large rank
Fix a prime , and let be any subring of the complex numbers that is
either integrally closed or contains a primitive th root of 1. For each
we compute the Yagita invariant at the prime for the symplectic
group .Comment: Minor changes compared to first versio
Quantum Mechanics as a Framework for Dealing with Uncertainty
Quantum uncertainty is described here in two guises: indeterminacy with its
concomitant indeterminism of measurement outcomes, and fuzziness, or
unsharpness. Both features were long seen as obstructions of experimental
possibilities that were available in the realm of classical physics. The birth
of quantum information science was due to the realization that such
obstructions can be turned into powerful resources. Here we review how the
utilization of quantum fuzziness makes room for a notion of approximate joint
measurement of noncommuting observables. We also show how from a classical
perspective quantum uncertainty is due to a limitation of measurability
reflected in a fuzzy event structure -- all quantum events are fundamentally
unsharp.Comment: Plenary Lecture, Central European Workshop on Quantum Optics, Turku
2009
Adiabatic information transport in the presence of decoherence
We study adiabatic population transfer between discrete positions. Being
closely related to STIRAP in optical systems, this transport is coherent and
robust against variations of experimental parameters. Thanks to these
properties the scheme is a promising candidate for transport of quantum
information in quantum computing. We study the effects of spatially registered
noise sources on the quantum transport and in particular model Markovian
decoherence via non-local coupling to nearby quantum point contacts which serve
as information readouts. We find that the rate of decoherence experienced by a
spatial superposition initially grows with spatial separation but surprisingly
then plateaus. In addition we include non-Markovian effects due to couplings to
nearby two level systems and we find that although the population transport
exhibits robustness in the presence of both types of noise sources, the
transport of a spatial superposition exhibits severe fragility.Comment: 11page
On the notion of coexistence in quantum mechanics
The notion of coexistence of quantum observables was introduced to describe the possibility of measuring two or more observables together. Here we survey the various different formalisations of this notion and their connections. We review examples illustrating the necessary degrees of unsharpness for two noncommuting observables to be jointly measurable (in one sense of the phrase). We demonstrate the possibility of measuring together (in another sense of the phrase) noncoexistent observables. This leads us to a reconsideration of the connection between joint measurability and noncommutativity of observables and of the statistical and individual aspects of quantum measurements
Transport, atom blockade and output coupling in a Tonks-Girardeau gas
Recent experiments have demonstrated how quantum-mechanical impurities can be
created within strongly correlated quantum gases and used to probe the
coherence properties of these systems [S. Palzer, C. Zipkes, C. Sias, and M.
K\"ohl, Phys. Rev. Lett. 103, 150601 (2009).]. Here we present a
phenomenological model to simulate such an output coupler for a Tonks-Girardeau
gas that shows qualitative agreement with the experimental results for atom
transport and output coupling. Our model allows us to explore nonequilibrium
transport phenomena in ultracold quantum gases and leads us to predict a regime
of atom blockade, where the impurity component becomes localized in the parent
cloud despite the presence of gravity. We show that this provides a stable
mixed-species quantum gas in the strongly correlated limit
- …