26 research outputs found

    Chromatin-Mediated Regulation of Genome Plasticity in Human Fungal Pathogens

    Get PDF
    Human fungal pathogens, such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, are a public health problem, causing millions of infections and killing almost half a million people annually. The ability of these pathogens to colonise almost every organ in the human body and cause life-threating infections relies on their capacity to adapt and thrive in diverse hostile host-niche environments. Stress-induced genome instability is a key adaptive strategy used by human fungal pathogens as it increases genetic diversity, thereby allowing selection of genotype(s) better adapted to a new environment. Heterochromatin represses gene expression and deleterious recombination and could play a key role in modulating genome stability in response to environmental changes. However, very little is known about heterochromatin structure and function in human fungal pathogens. In this review, I use our knowledge of heterochromatin structure and function in fungal model systems as a road map to review the role of heterochromatin in regulating genome plasticity in the most common human fungal pathogens: Candida albicans, Aspergillus fumigatus and Cryptococcus neoforman

    On and Off: Epigenetic Regulation of C. albicans Morphological Switches

    Get PDF
    The human fungal pathogen Candida albicans is a dimorphic opportunistic pathogen that colonises most of the human population without creating any harm. However, this fungus can also cause life-threatening infections in immunocompromised individuals. The ability to successfully colonise different host niches is critical for establishing infections and pathogenesis. C. albicans can live and divide in various morphological forms critical for its survival in the host. Indeed, C. albicans can grow as both yeast and hyphae and can form biofilms containing hyphae. The transcriptional regulatory network governing the switching between these different forms is complex but well understood. In contrast, non-DNA based epigenetic modulation is emerging as a crucial but still poorly studied regulatory mechanism of morphological transition. This review explores our current understanding of chromatin-mediated epigenetic regulation of the yeast to hyphae switch and biofilm formation. We highlight how modification of chromatin structure and non-coding RNAs contribute to these morphological transitions

    Sir2 regulates stability of repetitive domains differentially in the human fungal pathogen Candida albicans

    Get PDF
    DNA repeats, found at the ribosomal DNA locus, telomeres and subtelomeric regions, are unstable sites of eukaryotic genomes. A fine balance between genetic variability and genomic stability tunes plasticity of these chromosomal regions. This tuning mechanism is particularly important for organisms such as microbial pathogens that utilise genome plasticity as a strategy for adaptation. For the first time, we analyse mechanisms promoting genome stability at the rDNA locus and subtelomeric regions in the most common human fungal pathogen: Candida albicans In this organism, the histone deacetylase Sir2, the master regulator of heterochromatin, has acquired novel functions in regulating genome stability. Contrary to any other systems analysed, C. albicans Sir2 is largely dispensable for repressing recombination at the rDNA locus. We demonstrate that recombination at subtelomeric regions is controlled by a novel DNA element, the TLO Recombination Element, TRE, and by Sir2. While the TRE element promotes high levels of recombination, Sir2 represses this recombination rate. Finally, we demonstrate that, in C. albicans, mechanisms regulating genome stability are plastic as different environmental stress conditions lead to general genome instability and mask the Sir2-mediated recombination control at subtelomeres. Our data highlight how mechanisms regulating genome stability are rewired in C. albican

    Identification of an active RNAi pathway in Candida albicans

    Get PDF
    RNA interference (RNAi) is a fundamental regulatory pathway with a wide range of functions, including regulation of gene expression and maintenance of genome stability. Although RNAi is widespread in the fungal kingdom, well-known species, such as the model yeast , have lost the RNAi pathway. Until now evidence has been lacking for a fully functional RNAi pathway in , a human fungal pathogen considered critically important by the World Health Organization. Here, we demonstrated that the widely used reference strain (SC5314) contains an inactivating missense mutation in the gene encoding for the central RNAi component Argonaute. In contrast, most other isolates contain a canonical Argonaute protein predicted to be functional and RNAi-active. Indeed, using high-throughput small and long RNA sequencing combined with seamless CRISPR/Cas9-based gene editing, we demonstrate that an active RNAi machinery represses expression of subtelomeric gene families. Thus, an intact and functional RNAi pathway exists in , highlighting the importance of using multiple reference strains when studying this dangerous pathogen

    Stress combined with loss of the Candida albicans SUMO protease Ulp2 triggers selection of aneuploidy via a two-step process.

    Get PDF
    A delicate balance between genome stability and instability ensures genome integrity while generating genetic diversity, a critical step for evolution. Indeed, while excessive genome instability is harmful, moderated genome instability can drive adaptation to novel environments by maximising genetic variation. Candida albicans, a human fungal pathogen that colonises different parts of the human body, adapts rapidly and frequently to different hostile host microenvironments. In this organism, the ability to generate large-scale genomic variation is a key adaptative mechanism triggering dangerous infections even in the presence of antifungal drugs. Understanding how fitter novel karyotypes are selected is key to determining how C. albicans and other microbial pathogens establish infections. Here, we identified the SUMO protease Ulp2 as a regulator of C. albicans genome integrity through genetic screening. Deletion of ULP2 leads to increased genome instability, enhanced genome variation and reduced fitness in the absence of additional stress. The combined stress caused by the lack of ULP2 and antifungal drug treatment leads to the selection of adaptive segmental aneuploidies that partially rescue the fitness defects of ulp2Δ/Δ cells. Short and long-read genomic sequencing demonstrates that these novel genotypes are selected via a two-step process leading to the formation of novel chromosomal fragments with breakpoints at microhomology regions and DNA repeats

    Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function

    Get PDF
    The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans

    Molecular biology: silencing unlimited.

    Get PDF
    Heterochromatin domains are essential for normal chromosome functions. The Eri1 ribonuclease is a negative regulator of the RNA interference machinery; recent studies have shown that, in fission yeast lacking Eri1, heterochromatin formation is more promiscuous

    Building centromeres: home sweet home or a nomadic existence?

    No full text
    Centromere assembly and propagation is governed by genetic and epigenetic mechanisms. A centromere-specific histone H3 variant, CENP-A is strongly favored as the epigenetic mark that specifies centromere identity. Despite the critical importance of centromere function, centromeric sequences are not conserved. This has prompted exploration of other genomic and chromatin features to gain an understanding of where CENP-A is deposited. In this review we highlight recent papers that advance our understanding of how the cell builds a centromere. We focus on what influences the choice of site for CENP-A deposition and therefore the site of centromere formation. We then briefly discuss how centromeres are propagated once the site of centromere assembly is chosen

    X-chromosome targeting and dosage compensation are mediated by distinct domains in MSL-3.

    No full text
    In Drosophila, dosage compensation of X-linked genes is achieved by transcriptional upregulation of the male X chromosome. Genetic and biochemical studies have demonstrated that male-specific lethal (MSL) proteins together with roX RNAs regulate this process. Here, we show that MSL-3 is essential for cell viability and that three domains in the protein have distinct roles in dosage compensation. The chromo-barrel domain (CBD) is not necessary for MSL targeting to the male X chromosome but is important for male viability and equalization of X-linked gene transcription. The polar region cooperates with the CBD in MSL-3 function, whereas the MRG domain is responsible for targeting the protein to the X chromosome. Our results demonstrate that MSL-3 localization to the male X chromosome and transcriptional upregulation of X-linked genes are two separable functions of the MSL-3 protein
    corecore