1,028 research outputs found

    Nutrient concentrations and accumulations in precipitation over the north central region

    Get PDF
    The many facets of plant nutrients (e.g., N, P, and S) in the biosphere have become major environmental issues within the past decade. This concern is justified because of the increasing contamination of air and water resources by various substances on local and regional levels, especially in areas close to point sources. Little information is available, however, on variation in the amounts and concentrations of some of the substances present in air and natural water in various parts of the United States. Such information is essential for a better understanding of the transport and perhaps the fates of pollutants in the biosphere. The atmospheric component of the N and S cycles often can be a significant part of the various pools of their respective cycles (Allison, 1965; Erickson, 1963; Feth, 1966; Gambell and Fisher, 1964; Meetham, 1950; Robinson and Robbins, 1970), but the atmospheric component of the P cycle seems to be of minor significance to the cycling of this element in the environment. Among the various chemical elements present in precipitation (e.g., N, S, K, Cl, and Ca), N and S deserve special attention because N added by precipitation may contribute to nitrate pollution of surface and ground water. Sulfur and N may cause acid rain that can lead to increased leaching from soils of Ca and other nutrient elements, deterioration of aquatic ecosystems, damage to vegetation and buildings, and other agricultural and urban problems. On the other hand, the limited amounts of N and S brought down by precipitation might be useful to meet crop requirements for these elements in areas where soils have limited supplies of N and S (Allway et al., 1937; Erdman, 1923; Olson et al., 1973; Schuman and Burwell, 1974; Tabatabai and Bremner, 1972; Walker, 1969; Widdowson and Hanway, 1974)

    Prevalence of and variables associated with silent myocardial ischemia on exercise thallium-201 stress testing

    Get PDF
    AbstractThe prevalence of silent myocardial ischemia was prospectively assessed in a group of 103 consecutive patients (mean age 59 ± 10 years, 79% male) undergoing symptom-limited exercise thallium-201 scintigraphy. Variables that best correlated with the occurance of patients ischemia by quantitative scintigraphic criteria were examined. Fifty-nine patients (57%) had no angina on exercise testing. A significantly greater persent of patients with silent ischemia than of patients with angina had a recent myocardial infarction (31% versus 7%, P < 0.01), had no prior angina (91% versus 64%, p < 0.01), had dyspnea as an exercise test end point (56% versus 35%, p < 0.05) and exhibited redistribution defects in the supply regions of the right and circumflex coronary arteries (50% versus 35%, p < 0.05). The group with exercise angina had more ST depression (64% versus 41%, p < 0.05) and more patients with four or more redistribution defects.However, there was no difference between the two groups with respect to mean total thallium-201 perfusion score, number of redistribution defects per patient, multivessel thallium redistribution pattern or extent of angiographic coronary artery disease. There was also no difference between the silent ischemia and angina groups with respect to antianginal drug, usage, prevalence of diabetes mellitus, exercise duration, peak exercise heart rate, peak work load, peak double (rate-pressure) product and percent of patients achieving ≥85% of maximal predicted heart rate for age.Thus, in this study group, there was a rather high prevalence rate of silent ischemia (57%) by exercise thallium-201 criteria. Patients with silent ischemia and those with exercise angina had comparable 1) exercise tolerance and hemodynamics, 2) extent of angiographic coronary artery disease, and 3) extent of exercise-induced hypoperfusion. Finally, more patients with recent infarction had silent ischemia than had exercise angina

    North American Data

    Full text link
    North American Data fractures and reconfigures pre-existing narratives into new, unauthorized forms of storytelling. Core samples extracted from various narrative sources are reassigned new roles according to their proximity to each other. This paper functions as an introduction to the essential actors and their dramatic inclinations within fluctuating scenarios

    Detection of incorrect manufacturer labelling of hip components

    Get PDF
    We describe the case of a 53-year-old man who underwent a left metal-on-metal hip resurfacing in 2015. Component size mismatch (CSM) was suspected because of the patient's immediate post-operative mechanical symptoms and high metal ion levels. Surgical notes indicated the appropriate combinations of implants were used. However, we detected a mismatch using computed tomography. Revision was performed and subsequent measurements of explanted components confirmed the mismatch. To our knowledge, this case is the first report of a CT method being used in a patient to pre-operatively identify CSM

    Relatively lower body mass index is associated with an excess of severe truncal asymmetry in healthy adolescents: Do white adipose tissue, leptin, hypothalamus and sympathetic nervous system influence truncal growth asymmetry?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In healthy adolescents normal back shape asymmetry, here termed truncal asymmetry (TA), is evaluated by higher and lower subsets of BMI. The study was initiated after research on girls with adolescent idiopathic scoliosis (AIS) showed that higher and lower BMI subsets discriminated patterns of skeletal maturation and asymmetry unexplained by existing theories of pathogenesis leading to a new interpretation which has therapeutic implications <it>(double neuro-osseous theory)</it>.</p> <p>Methods</p> <p>5953 adolescents age 11–17 years (boys 2939, girls 3014) were examined in a school screening program in two standard positions, standing forward bending (FB) and sitting FB. The sitting FB position is thought to reveal intrinsic TA free from back humps induced by any leg-length inequality. TA was measured in both positions using a Pruijs scoliometer as angle of trunk inclinations (ATIs) across the back at each of three spinal regions, thoracic, thoracolumbar and lumbar. Abnormality of ATIs was defined as being outside 2 standard deviations for each age group, gender, position and spinal region, and termed <it>severe </it>TA.</p> <p>Results</p> <p>In the sitting FB position after correcting for age,<it>relatively lower BMIs </it>are statistically associated with a greater number of severe TAs than with relatively higher BMIs in both girls (thoracolumbar region) and boys (thoracolumbar and lumbar regions).</p> <p>The relative frequency of severe TAs is significantly higher in girls than boys for each of the right thoracic (56.76%) and thoracolumbar (58.82%) regions (p = 0.006, 0.006, respectively). After correcting for age, smaller BMIs are associated with more <it>severe TAs </it>in boys and girls.</p> <p>Discussion</p> <p>BMI is a surrogate measure for body fat and circulating leptin levels. The finding that girls with relatively lower BMI have significantly later menarche, and a significant excess of TAs, suggests a relation to energy homeostasis through the hypothalamus. The hypothesis we suggest for the pathogenesis of severe TA in girls and boys has the same mechanism as that proposed recently for AIS girls, namely: severe TAs are initiated by a <it>genetically-determined selectively </it>increased hypothalamic sensitivity (up-regulation, i.e. increased sensitivity) to leptin with asymmetry as an adverse response to stress (hormesis), mediated bilaterally mainly to the growing trunk via the sympathetic nervous system <it>(leptin-hypothalamic-sympathetic nervous system (LHS) concept)</it>. The putative autonomic dysfunction is thought to be increased by any lower circulating leptin levels associated with relatively lower BMIs. Sympathetic nervous system activation with asymmetry leads to asymmetries in ribs and/or vertebrae producing severe TA when beyond the capacity of postural mechanisms of the somatic nervous system to control the shape distortion of the trunk. A test of this hypothesis testing skin sympathetic responses, as in the Rett syndrome, is suggested.</p

    Synapse-specific expression of calcium-permeable AMPA receptors in neocortical layer 5

    Get PDF
    In the hippocampus, calcium‐permeable AMPA receptors have been found in a restricted subset of neuronal types that inhibit other neurons, although their localization in the neocortex is less well understood. In the present study, we looked for calcium‐permeable AMPA receptors in two distinct populations of neocortical inhibitory neurons: basket cells and Martinotti cells. We found them in the former but not in the latter. Furthermore, in basket cells, these receptors were associated with particularly fast responses. Computer modelling predicted (and experiments verified) that fast calcium‐permeable AMPA receptors enable basket cells to respond rapidly, such that they promptly inhibit neighbouring cells and shut down activity. The results obtained in the present study help our understanding of pathologies such as stroke and epilepsy that have been associated with disordered regulation of calcium‐permeable AMPA receptors

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans
    corecore