25 research outputs found

    Low meteorological influence found in 2019 Amazonia fires

    Get PDF
    Technical note. The sudden increase in Amazon fires early in the 2019 fire season made global headlines. While it has been heavily speculated that the fires were caused by deliberate human ignitions or human-induced landscape changes, there have also been suggestions that meteorological conditions could have played a role. Here, we ask two questions: were the 2019 fires in the Amazon unprecedented in the historical record, and did the meteorological conditions contribute to the increased burning? To answer this, we take advantage of a recently developed modelling framework which optimises a simple fire model against observations of burnt area and whose outputs are described as probability densities. This allowed us to test the probability of the 2019 fire season occurring due to meteorological conditions alone. The observations show that the burnt area was higher than in previous years in regions where there is already substantial deforestation activity in the Amazon. Overall, 11 % of the area recorded the highest early season (June–August) burnt area since the start of our observational record, with areas in Brazil's central arc of deforestation recording the highest ever monthly burnt area in August. However, areas outside of the regions of widespread deforestation show less burnt area than the historical average, and the optimised model shows that this low burnt area would have extended over much of the eastern Amazon region, including in Brazil's central arc of deforestation with high fire occurrence in 2019. We show that there is a 9 % likelihood of the observed August fires being caused by meteorological conditions alone, decreasing to 6 %–7 % along the agricultural–humid forest interface in Brazil's central states and 8 % in Paraguay and Bolivia dry forests. Our results suggest that changes in land use, cover or management are the likely drivers of the substantial increase in the 2019 early fire season burnt area, especially in Brazil. Burnt area for September in the arc of deforestation had a 14 %–26 % probability of being caused by meteorological conditions, potentially coinciding with a shift in fire-related policy from South American governments

    South American fires and their impacts on ecosystems increase with continued emissions

    Get PDF
    Unprecedented fire events in recent years are leading to a demand for improved understanding of how climate change is already affecting fires, and how this could change in the future. Increased fire activity in South America is one of the most concerning of all the recent events, given the potential impacts on local ecosystems and the global climate from the loss of large carbon stores under future socio-environmental change. However, due to the complexity of interactions and feedbacks, and lack of complete representation of fire biogeochemistry in many climate models, there is currently low agreement on whether climate change will cause fires to become more or less frequent in the future, and what impact this will have on ecosystems. Here we use the latest climate simulations from the UK Earth System Model UKESM1 to understand feedbacks in fire, dynamic vegetation, and terrestrial carbon stores using the JULES land surface model, taking into account future scenarios of change in emissions and land use. Based on evaluation of model performance for the present day, we address the specific policy-relevant question: how much fire-induced carbon loss will there be over South America at different global warming levels in the future? We find that burned area and fire emissions are projected to increase in the future due to hotter and drier conditions, which leads to large reductions in carbon storage, especially when combined with increasing land-use conversion. The model simulates a 30% loss of carbon at 4°C under the highest emission scenario, which could be reduced to 7% if temperature rise is limited to 1.5°C. Our results provide a critical assessment of ecosystem resilience under future climate change, and could inform the way fire and land-use is managed in the future to reduce the most deleterious impacts of climate change

    Understanding the placement of fire emissions from the Brazilian Cerrado biome in the atmospheric carbon budget

    Get PDF
    Estimating fire emissions in the Brazilian Cerrado requires a comprehensive approach, combining data, fire and vegetation modelling techniques, and policy. Although high quantities of global fire emissions come from the Cerrado, research in this area is still overlooked when compared to other savanna countries. This study systematically reviewed 69 papers on fire emissions from the Cerrado. The aim was to provide insights into the placement of the Cerrado in the atmospheric carbon budget and support improved estimation of the Biome’s carbon balance. Our review finds that, in the Cerrado, studies often focus on quantifying fire dynamics parameters and emissions, and that a holistic approach is required to estimate fire emissions, which is hindered due to the difficulty in valuing the qualitative aspects of fire. Evidence suggests a rise in interest in understanding fire emissions in the Cerrado, reflected in the increased number of studies throughout the years. More research is required to understand the aspects of fire dynamics in the Cerrado, how these reflect fire emissions locally and globally and potential mitigation activities. This could be achieved by including fire management representation in land surface models and using observational data to constrain and assess their utility

    Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends

    Get PDF
    This paper shows recent progress in our understanding of climate variability and trends in the Amazon region, and how these interact with land use change. The review includes an overview of up-to-date information on climate and hydrological variability, and on warming trends in Amazonia, which reached 0.6–0.7°C over the last 40 years, with 2016 as the warmest year since at least 1950 (0.9°C + 0.3°C). We focus on local and remote drivers of climate variability and change. We review the impacts of these drivers on the length of dry season, the role of the forest in climate and carbon cycles, the resilience of the forest, the risk of fires and biomass burning, and the potential “die back” of the Amazon forests if surpassing a “tipping point”. The role of the Amazon in moisture recycling and transport is also investigated, and a review of model development for climate change projections in the region is included. In sum, future sustainability of the Amazonian forests and its many services requires management strategies that consider the likelihood of multi-year droughts superimposed on a continued warming trend. Science has assembled enough knowledge to underline the global and regional importance of an intact Amazon region that can support policymaking and to keep this sensitive ecosystem functioning. This major challenge requires substantial resources and strategic cross-national planning, and a unique blend of expertise and capacities established in Amazon countries and from international collaboration. This also highlights the role of deforestation control in support of policy for mitigation options as established in the Paris Agreement of 2015

    Global and regional trends and drivers of fire under climate change

    Get PDF
    Recent wildfire outbreaks around the world have prompted concern that climate change is increasing fire incidence, threatening human livelihood and biodiversity, and perpetuating climate change. Here we review current understanding of the impacts of climate change on fire weather (weather conditions conducive to the ignition and spread of wildfires) and the consequences for regional fire activity as mediated by a range of other bioclimatic factors (including vegetation biogeography, productivity and lightning) and human factors (including ignition, suppression, and land use). Through supplemental analyses, we present a stocktake of regional trends in fire weather and burned area (BA) during recent decades, and we examine how fire activity relates to its bioclimatic and human drivers

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF

    State of wildfires 2023–24

    Get PDF
    Climate change is increasing the frequency and intensity of wildfires globally, with significant impacts on society and the environment. However, our understanding of the global distribution of extreme fires remains skewed, primarily influenced by media coverage and regional research concentration. This inaugural State of Wildfires report systematically analyses fire activity worldwide, identifying extreme events from the March 2023–February 2024 fire season. We assess the causes, predictability, and attribution of these events to climate change and land use, and forecast future risks under different climate scenarios. During the 2023–24 fire season, 3.9 million km2 burned globally, slightly below the average of previous seasons, but fire carbon (C) emissions were 16 % above average, totaling 2.4 Pg C. This was driven by record emissions in Canadian boreal forests (over 9 times the average) and dampened by reduced activity in African savannahs. Notable events included record-breaking wildfire extent and emissions in Canada, the largest recorded wildfire in the European Union (Greece), drought-driven fires in western Amazonia and northern parts of South America, and deadly fires in Hawai’i (100 deaths) and Chile (131 deaths). Over 232,000 people were evacuated in Canada alone, highlighting the severity of human impact. Our analyses revealed that multiple drivers were needed to cause areas of extreme fire activity. In Canada and Greece a combination of high fire weather and an abundance of dry fuels increased the probability of fires by 4.5-fold and 1.9–4.1-fold, respectively, whereas fuel load and direct human suppression often modulated areas with anomalous burned area. The fire season in Canada was predictable three months in advance based on the fire weather index, whereas events in Greece and Amazonia had shorter predictability horizons. Formal attribution analyses indicated that the probability of extreme events has increased significantly due to anthropogenic climate change, with a 2.9–3.6-fold increase in likelihood of high fire weather in Canada and a 20.0–28.5-fold increase in Amazonia. By the end of the century, events of similar magnitude are projected to occur 2.22–9.58 times more frequently in Canada under high emission scenarios. Without mitigation, regions like Western Amazonia could see up to a 2.9-fold increase in extreme fire events. For the 2024–25 fire season, seasonal forecasts highlight moderate positive anomalies in fire weather for parts of western Canada and South America, but no clear signal for extreme anomalies is present in the forecast. This report represents our first annual effort to catalogue extreme wildfire events, explain their occurrence, and predict future risks. By consolidating state-of-the-art wildfire science and delivering key insights relevant to policymakers, disaster management services, firefighting agencies, and land managers, we aim to enhance society’s resilience to wildfires and promote advances in preparedness, mitigation, and adaptation

    Scenario set-up and forcing data for impact model evaluation and impact attribution within the third round of the Inter-Sectoral Model Intercomparison Project (ISIMIP3a)

    Get PDF
    This paper describes the rationale and the protocol of the first component of the third simulation round of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a, www.isimip.org) and the associated set of climate-related and direct human forcing data (CRF and DHF, respectively). The observation-based climate-related forcings for the first time include high-resolution observational climate forcings derived by orographic downscaling, monthly to hourly coastal water levels, and wind fields associated with historical tropical cyclones. The DHFs include land use patterns, population densities, information about water and agricultural management, and fishing intensities. The ISIMIP3a impact model simulations driven by these observation-based climate-related and direct human forcings are designed to test to what degree the impact models can explain observed changes in natural and human systems. In a second set of ISIMIP3a experiments the participating impact models are forced by the same DHFs but a counterfactual set of atmospheric forcings and coastal water levels where observed trends have been removed. These experiments are designed to allow for the attribution of observed changes in natural, human and managed systems to climate change, rising CH4 and CO2 concentrations, and sea level rise according to the definition of the Working Group II contribution to the IPCC AR6

    Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial

    Get PDF
    Background Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19.Methods The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 µg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 µg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (antispike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing.Findings Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6–77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3–214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030–27 162), which increased to 37 460 ELU/mL (31 996–43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41–1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996–30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826–64 452), with a geometric mean fold change of 2·19 (1·90–2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37–14·32) and 15·90 (12·92–19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24–16·54] in the BNT162b2 group and 6·22 [3·90–9·92] in the mRNA-1273 group).Interpretation Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose
    corecore