316 research outputs found

    A "Warm Formamide" Scenario for the Origins of Life Might not be so Hot: Comment on "Formamide and the Origin of Life"

    Get PDF
    In this review, Saladino et al. present an intriguing hypothesis surrounding the role of formamide in the origins of life on Earth, backed by experimental results supporting each step from formamide to RNA polymers. The overall premise is that, from formamide and inorganic phosphate, RNA molecules over 100 nucleotides in length can be produced. In addition, many carboxylic acids likely relevant to prebiotic metabolism, are formed along the way. Thus, from a rather simple organic molecule that has been observed in outer space (formamide), you can generate many of the compounds necessary for the origins of life. However, because high temperatures (160 C) are required for the formamide reactions, it remains unclear where the "warm formamide" scenario could have occurred. Low-temperature, aqueous hydrogen cyanide-based prebiotic chemistry that we know actually happened has been shown to produce many of the molecules invoked in the formamide hypothesis: amino acids, carboxylic acids, sugar acids, and nucleobases have all been found in meteorites recovered on Earth, providing a plausible route for their synthesis and delivery. In contrast, a large portion of the formamide hypothesis is based on relatively hightemperature reactions, A plausible milieu for high-temperature reactions with concentrated formamide is yet to be described, and is critical for this hypothesis to be validated. Hydrothermal vents are attractive heat sources, and the higher boiling point of formamide has been invoked as a mechanism to concentrate it from an aqueous solution, Unless the water can actually evaporate, however, there would be no net enrichment. For example, in the context of a deep-sea vent, any water "removed" by heating would be quickly replaced. Some of the individual reactions underpinning the present hypothesis have been met with skepticism because they go against conventional wisdom, To name a few of the surprising results: the observation that nucleosides can be converted to cyclic phosphates when heated in the presence of minerals and inorganie phosphate; that 3'-5' cGMP and cAMP nucleotides polymerize rapidly into RNA oligomers, even in the absence of monovalent counterions and that end-to-end ligation reactions between RNA oligomers occur in essentially pure water, without requiring any activating groups or counterions. Because the polymerization reactions are simply transesterification reactions, that they readily occur in the absence of cations makes one wonder why nearly all ribozyme-catalyzed transesterification reactions are metal-ion dependent; similarly, that the end-to-end ligation reactions do not require activation runs counter to the observation that all protein-catalyzed ligation and polymerization reactions of RNA and DNA require activated substrates. Detailed mechanistic studies of the reported reactions are warranted and could provide important insights for understanding the chemistry behind the origins of life. Because the authors have produced many of the experimental results supporting their hypothesis, they could demonstrate the validity of their hypothesis by converting formamide into approx 100 nucleotide RNA oligomers, using the products of one reaction as the reactants for the next reaction, under specific conditions plausible on the pre-biotic Earth. Such a demonstration would represent a milestone for our understanding of the origins of life

    Conversion and Extraction of Insoluble Organic Materials in Meteorites

    Get PDF
    We endeavor to develop and implement methods in our laboratory to convert and extract insoluble organic materials (IOM) from low car-bon bearing meteorites (such as ordinary chondrites) and Precambrian terrestrial rocks for the purpose of determining IOM structure and prebiotic chemistries preserved in these types of samples. The general scheme of converting and extracting IOM in samples is summarized in Figure 1. First, powdered samples are solvent extracted in a micro-Soxhlet apparatus multiple times using solvents ranging from non-polar to polar (hexane - non-polar, dichloromethane - non-polar to polar, methanol - polar protic, and acetonitrile - polar aprotic). Second, solid residue from solvent extractions is processed using strong acids, hydrochloric and hydrofluoric, to dissolve minerals and isolate IOM. Third, the isolated IOM is subjected to both thermal (pyrolysis) and chemical (oxidation) degradation to release compounds from the macromolecular material. Finally, products from oxidation and pyrolysis are analyzed by gas chromatography - mass spectrometry (GCMS). We are working toward an integrated method and analysis scheme that will allow us to determine prebiotic chemistries in ordinary chondrites and Precambrian terrestrial rocks. Powerful techniques that we are including are stepwise, flash, and gradual pyrolysis and ruthenium tetroxide oxidation. More details of the integrated scheme will be presented

    The elusive quest for RNA knots

    Get PDF
    Physical entanglement, and particularly knots arise spontaneously in equilibrated polymers that are sufficiently long and densely packed. Biopolymers are no exceptions: knots have long been known to occur in proteins as well as in encapsidated viral DNA. The rapidly growing number of RNA structures has recently made it possible to investigate the incidence of physical knots in this type of biomolecule, too. Strikingly, no knots have been found to date in the known RNA structures. In this Point of View Article we discuss the absence of knots in currently available RNAs and consider the reasons why knots in RNA have not yet been found, despite the expectation that they should exist in Nature. We conclude by singling out a number of RNA sequences that, based on the properties of their predicted secondary structures, are good candidates for knotted RNAs

    Meteoritic Input of Amino Acids and Nucleobases: Methodology and Implications for the Origins of Life

    Get PDF
    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 40 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return mIssIons

    Beyond Nanopore Sequencing in Space: Identifying the Unknown

    Get PDF
    Astronaut Kate Rubins sequenced DNA on the International Space Station (ISS) for the first time in August 2016 (Figure 1A). A 2D sequencing library containing an equal mixture of lambda bacteriophage, Escherichia coli, and Mus musculus was prepared on the ground with a SQK_MAP006 kit and sent to the ISS frozen and loaded into R7.3 flow cells. After a total of 9 on-orbit sequencing runs over 6 months, it was determined that there was no decrease in sequencing performance on-orbit compared to ground controls (1). A total of ~280,000 and ~130,000 reads generated on-orbit and on the ground, respectively, identified 90% of reads that were attributed to 30% lambda bacteriophage, 30% Escherichia coli, and 30% M. musculus (Figure 1B). Extensive bioinformatics analysis determined comparable 2D and 1D read accuracies between flight and ground runs (Figure 1C), and data collected from the ISS were able to construct directed assemblies of E.coli and lambda genomes at 100% and M. musculus mitochondrial genome at 96.7%. These findings validate sequencing as a viable option for potential on-orbit applications such as environmental microbial monitoring and disease diagnosis. Current microbial monitoring of the ISS applies culture-based techniques that provide colony forming unit (CFU) data for air, water, and surface samples. The identity of the cultured microorganisms in unknown until sample return and ground-based analysis, a process that can take up to 60 days. For sequencing to benefit ISS applications, spaceflight-compatible sample preparation techniques are required. Subsequent to the testing of the MinION on-orbit, a sample-to-sequence method was developed using miniPCR and basic pipetting, which was only recently proven to be effective in microgravity. The work presented here details the in- flight sample preparation process and the first application of DNA sequencing on the ISS to identify unknown ISS-derived microorganisms

    The effects of parent-body hydrothermal heating on amino acid abundances in CI-like chondrites

    Get PDF
    AbstractWe determined the amino acid abundances and enantiomeric compositions of the Antarctic CI1 carbonaceous chondrites Yamato (Y)-86029 and Y-980115, as well as the Ivuna and Orgueil CI1 carbonaceous chondrites by liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Y-86029 and Y-980115 both show evidence of parent-body heating (500–600 °C) in addition to aqueous alteration, while Ivuna and Orgueil only show evidence for aqueous alteration. In contrast to Ivuna and Orgueil, which each contain ∼70 nmol/g of amino acids in acid-hydrolyzed, water extracts, both heated Yamato CI meteorites contain only low levels of amino acids that were primarily l-enantiomers of proteinogenic amino acids, indicating that they are likely to be terrestrial in origin. Because indigenous amino acids have been found in meteorites that have experienced metamorphic temperatures of >1000 °C with only minimal aqueous alteration, heating alone is not sufficient to explain the lack of amino acids in Y-86029 and Y-980115. Rather, our data suggest that the combination of heating and aqueous alteration has a profound destructive effect on amino acids in meteorites. This finding has implications for the origins of amino acids and other molecules in the early evolution of our solar system

    Extraterrestrial Amino Acids Identified in Metal-Rich CH and CB Carbonaceous Chondrites from Antarctica

    Get PDF
    Carbonaceous chondrites contain numerous indigenous organic compounds and could have been an important source of prebiotic compounds required for the origin of life on Earth or elsewhere. Extraterrestrial amino acids have been reported in five of the eight groups of carbonaceous chondrites and are most abundant in CI, CM, and CR chondritesbut are also present in the more thermally altered CV and CO chondrites. We report the abundance, distribution, and enantiomeric and isotopic compositions of simple primary amino acids in six metal-rich CH and CB carbonaceous chondrites that have not previously been investigated for amino acids: Allan Hills (ALH) 85085 (CH3), Pecora Escarpment(PCA) 91467 (CH3), Patuxent Range (PAT) 91546 (CH3), MacAlpine Hills (MAC) 02675(CBb), Miller Range (MIL) 05082 (CB), and Miller Range (MIL) 07411 (CB). Amino acid abundances and carbon isotopic values were obtained by using both liquid chromatography time-of-flight mass spectrometry and fluorescence, and gas chromatography isotope ratiomass spectrometry. The (delta D, delta C-13, delta N-15) ratios of multiple amino acids fall outside of the terrestrial range and support their extraterrestrial origin. Extracts of CH chondrites were found to be particularly rich in amino acids (1316 parts per million, ppm) while CB chondrite extracts had much lower abundances (0.22 ppm). The amino acid distributions of the CH and CB chondrites were distinct from the distributions observed in type 2 and 3 CM and CR chondrites and contained elevated levels of beta-, gamma-, and delta-amino acids compared to the corresponding alpha-amino acids, providing evidence that multiple amino acid formation mechanisms were important in CH and CB chondrites

    Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    Get PDF
    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for ~-alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry

    Compound-Specific Isotopic Analysis of Meteoritic Amino Acids as a Tool for Evaluating Potential Formation Pathways

    Get PDF
    Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds

    New Insights into Amino Acid Preservation in the Early Oceans Using Modern Analytical Techniques

    Get PDF
    Protein- and non-protein-amino acids likely occupied the oceans at the time of the origin and evolution of life. Primordial soup-, hydrothermal vent-, and meteoritic-processes likely contributed to this early chemical inventory. Prebiotic synthesis and carbonaceous meteorite studies suggest that non-protein amino acids were likely more abundant than their protein-counterparts. Amino acid preservation before abiotic and biotic destruction is key to biomarker availability in paleoenvironments and remains an important uncertainty. To constrain primitive amino acid lifetimes, a 1992 archived seawater/beach sand mixture was spiked with D,L-alanine, D,L-valine (Val), alpha-aminoisobutyric acid (alpha-AIB), D,L-isovaline (Iva), and glycine (Gly). Analysis by high performance liquid chromatography with fluorescence detection (HPLC-FD) showed that only D-Val and non-protein amino acids were abundant after 2250 days. The mixture was re-analyzed in 2012 using HPLC-FD and a triple quadrupole mass spectrometer (QqQ-MS). The analytical results 20 years after the inception of the experiment were strikingly similar to those after 2250 days. To confirm that viable microorganisms were still present, the mixture was re-spiked with Gly in 2012. Aliquots were collected immediately after spiking, and at 5- and 9-month intervals thereafter. Final HPLC-FD/QqQ-MS analyses were performed in 2014. The 2014 analyses revealed that only alpha-AIB, D,L-Iva, and D-Val remained abundant. The disappearance of Gly indicated that microorganisms still lived in the mixture and were capable of consuming protein amino acids. These findings demonstrate that non-protein amino acids are minimally impacted by biological degradation and thus have very long lifetimes under these conditions. Primitive non-protein amino acids from terrestrial synthesis, or meteorite in-fall, likely experienced great-er preservation than protein amino acids in paleo-oceanic environments. Such robust molecules may have reached a steady state concentration dependent on ocean circulation through hydrothermal systems and synthetic input processes. We are presently trying to estimate this concentration
    • …
    corecore