2,779 research outputs found

    Analysis of Germanium Hydride Molecular Clusters

    Get PDF
    Isotope clusters in library electron ionization mass spectra of germanes often appear a few u lower than theoretically expected from elemental composition; for example, the dominant peak of the Ge4H10+ pattern is shifted 8 u down. This phenomenon is due to combinations of three essential components: the molecular ion GenH2n+2+ and two products of hydrogen elimination, GenH+ and Gen+. Using these components, isotope clusters can be accurately projected for germanium hydrides from Ge2H6 up to Ge5H12

    Influence of speed of sample processing on placental energetics and signalling pathways: implications for tissue collection.

    Get PDF
    INTRODUCTION: The placenta is metabolically highly active due to extensive endocrine and active transport functions. Hence, placental tissues soon become ischaemic after separation from the maternal blood supply. Ischaemia rapidly depletes intracellular ATP, and leads to activation of stress-response pathways aimed at reducing metabolic demands and conserving energy resources for vital functions. Therefore, this study aimed to elucidate the effects of ischaemia ex vivo as may occur during tissue collection on phosphorylation of placental proteins and kinases involved in growth and cell survival, and on mitochondrial complexes. METHODS: Eight term placentas obtained from normotensive non-laboured elective caesarean sections were kept at room-temperature and sampled at 10, 20, 30 and 45 min after delivery. Samples were analyzed by Western blotting. RESULTS: Between 10 and 45 min the survival signalling pathway intermediates, P-AKT, P-GSK3α and β, P-4E-BP1 and P-p70S6K were reduced by 30-65%. Stress signalling intermediates, P-eIF2α increased almost 3 fold after 45 min. However, other endoplasmic reticulum stress markers and the Heat Shock Proteins, HSP27, HSP70 and HSP90, did not change. Phosphorylation of AMPK, an energy sensor, was elevated 2 fold after 45 min. Contemporaneously, there was an ∼25% reduction in mitochondrial complex IV subunit I. DISCUSSION AND CONCLUSIONS: These results suggest that for placental signalling studies, samples should be taken and processed within 10 min of caesarean delivery to minimize the impact of ischaemia on protein phosphorylation

    Unravelling the controls on the molybdenum isotope ratios of river waters

    Get PDF
    The molybdenum (Mo) isotope ratios (δ98/95Mo) of river waters control the δ98/95Mo values of seawater and impact on the use of Mo isotope ratios as a proxy of past redox conditions. The δ98/95Mo values of river waters vary by more than 2 ‰, yet the relative roles of lithology versus fractionation during weathering remain contested. Here, we combine measurements from river waters (δ98/95Modiss), river bed materials (δ98/95MoBM) and soils from locations with contrasting lithology. The δ98/95Mo values of river bed materials (δ98/95MoBM), set by rock type, vary by ~1 ‰ between rivers in New Zealand, the Mackenzie Basin, and Iceland. However, the difference between dissolved and solid phase Mo isotopes (Δ98/95Modiss-BM) varies from +0.3 ‰ to +1.0 ‰. We estimate Mo removal from solution using the mobile trace element rhenium and find that it correlates with Δ98/95Modiss-BM across the sample set. The adsorption of Mo to Fe-Mn-(oxyhydr) oxides can explain the observed fractionation. Together, the amount of Mo released through dissolution and taken up by (oxyhydr)oxide formation on land may cause changes in the δ98/95Mo values of rivers, driving long term changes in the Mo isotope ratios of seawater

    InterFace : A software package for face image warping, averaging, and principal components analysis

    Get PDF
    We describe InterFace, a software package for research in face recognition. The package supports image warping, reshaping, averaging of multiple face images, and morphing between faces. It also supports principal components analysis (PCA) of face images, along with tools for exploring the “face space” produced by PCA. The package uses a simple graphical user interface, allowing users to perform these sophisticated image manipulations without any need for programming knowledge. The program is available for download in the form of an app, which requires that users also have access to the (freely available) MATLAB Runtime environment

    Measuring commissioners’ willingness-to-pay for community based childhood obesity prevention programmes using a discrete choice experiment

    Get PDF
    Background: In the UK, rates of childhood obesity remain high. Community based programmes for child obesity prevention are available to be commissioned by local authorities. However, there is a lack of evidence regarding how programmes are commissioned and which attributes of programmes are valued most by commissioners. The aim of this study was to determine the factors that decision-makers prioritise when commissioning programmes that target childhood obesity prevention. Methods: An online discrete choice experiment (DCE) was used to survey commissioners and decision makers in the UK to assess their willingness-to-pay for childhood obesity programmes. Results: A total of 64 commissioners and other decision makers completed the DCE. The impact of programmes on behavioural outcomes was prioritised, with participants willing to pay an extra £16,600/year if average daily fruit and vegetable intake increased for each child by one additional portion. Participants also prioritised programmes that had greater number of parents fully completing them, and were willing to pay an extra £4810/year for every additional parent completing a programme. The number of parents enrolling in a programme (holding the number completing fixed) and hours of staff time required did not significantly influence choices. Conclusions: Emphasis on high programme completion rates and success increasing children’s fruit and vegetable intake has potential to increase commissioning of community based obesity prevention programmes

    Ge and Si Isotope Behavior During Intense Tropical Weathering and Ecosystem Cycling

    Get PDF
    Chemical weathering of volcanic rocks in warm and humid climates contributes disproportionately to global solute fluxes. Geochemical signatures of solutes and solids formed during this process can help quantify and reconstruct weathering intensity in the past. Here, we measured silicon (Si) and germanium (Ge) isotope ratios of the soils, clays, and fluids from a tropical lowland rainforest in Costa Rica. The bulk topsoil is intensely weathered and isotopically light (mean ± 1σ: δ³⁰Si = −2.1 ± 0.3‰, δ⁷⁴Ge = −0.13 ± 0.12‰) compared to the parent rock (δ³⁰Si = −0.11 ± 0.05‰, δ⁷⁴Ge = 0.59 ± 0.07‰). Neoforming clays have even lower values (δ³⁰Si = −2.5 ± 0.2‰, δ⁷⁴Ge = −0.16 ± 0.09‰), demonstrating a whole‐system isotopic shift in extremely weathered systems. The lowland streams represent mixing of dilute local fluids (δ³⁰Si = 0.2 − 0.6‰, δ⁷⁴Ge = 2.2 − 2.6‰) with solute‐rich interbasin groundwater (δ³⁰Si = 1.0 ± 0.2‰, δ⁷⁴Ge = 4.0‰). Using a Ge‐Si isotope mass balance model, we calculate that 91 ± 9% of Ge released via weathering of lowland soils is sequestered by neoforming clays, 9 ± 9% by vegetation, and only 0.2 ± 0.2% remains dissolved. Vegetation plays an important role in the Si cycle, directly sequestering 39 ± 14% of released Si and enhancing clay neoformation in surface soils via the addition of amorphous phytolith silica. Globally, volcanic soil δ⁷⁴Ge closely tracks the depletion of Ge by chemical weathering (τGe), whereas δ³⁰Si and Ge/Si both reflect the loss of Si (τ_{Si}). Because of the different chemical mobilities of Ge and Si, a δ⁷⁴Ge‐δ³⁰Si multiproxy system is sensitive to a wider range of weathering intensities than each isotopic system in isolation

    Reactive intercalation and oxidation at the buried graphene-germanium interface

    Get PDF
    We explore a number of different electrochemical, wet chemical, and gas phase approaches to study intercalation and oxidation at the buried graphene-Ge interface. While the previous literature focused on the passivation of the Ge surface by chemical vapor deposited graphene, we show that particularly via electrochemical intercalation in a 0.25 N solution of anhydrous sodium acetate in glacial acetic acid, this passivation can be overcome to grow GeO2 under graphene. Angle resolved photoemission spectroscopy, Raman spectroscopy, He ion microscopy, and time-of-flight secondary ion mass spectrometry show that the monolayer graphene remains undamaged and its intrinsic strain is released by the interface oxidation. Graphene acts as a protection layer for the as-grown Ge oxide, and we discuss how these insights can be utilized for new processing approaches.We acknowledge financial support from the EPSRC (EP/K016636/1, EP/P51021X/1) and the Future Photonics Hub - Innovation Partnership Fund (EPSRC EP/L00044X/1). P.B.W. acknowledges EPSRC Cambridge NanoDTC EP/G037221/1. R.S.W. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme through a EU Marie Skłodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870). R.W. acknowledges EPSRC Doctoral Training Award (EP/M506485/1)
    corecore