204 research outputs found

    Magnetic radiation observed by OGO-1 and OGO-3 broadband VLF receivers

    Get PDF
    OGO-1 and OGO-3 VLF emission records of magnetospheric electromagnetic nois

    A low-energy solar cosmic ray experiment for OGO-F

    Get PDF
    Instrumentation data for low energy solar cosmic ray measurements using OGO-F satellit

    PTHrP Induces Autocrine/Paracrine Proliferation of Bone Tumor Cells through Inhibition of Apoptosis

    Get PDF
    Giant Cell Tumor of Bone (GCT) is an aggressive skeletal tumor characterized by local bone destruction, high recurrence rates and metastatic potential. Previous work in our lab has shown that the neoplastic cell of GCT is a proliferating pre-osteoblastic stromal cell in which the transcription factor Runx2 plays a role in regulating protein expression. One of the proteins expressed by these cells is parathryroid hormone-related protein (PTHrP). The objectives of this study were to determine the role played by PTHrP in GCT of bone with a focus on cell proliferation and apoptosis. Primary stromal cell cultures from 5 patients with GCT of bone and one lung metastsis were used for cell-based experiments. Control cell lines included a renal cell carcinoma (RCC) cell line and a human fetal osteoblast cell line. Cells were exposed to optimized concentrations of a PTHrP neutralizing antibody and were analyzed with the use of cell proliferation and apoptosis assays including mitochondrial dehydrogenase assays, crystal violet assays, APO-1 ELISAs, caspase activity assays, flow cytometry and immunofluorescent immunohistochemistry. Neutralization of PTHrP in the cell environment inhibited cell proliferation in a consistent manner and induced apoptosis in the GCT stromal cells, with the exception of those obtained from a lung metastasis. Cell cycle progression was not significantly affected by PTHrP neutralization. These findings indicate that PTHrP plays an autocrine/paracrine neoplastic role in GCT by allowing the proliferating stromal cells to evade apoptosis, possibly through non-traditional caspase-independent pathways. Thus PTHrP neutralizing immunotherapy is an intriguing potential therapeutic strategy for this tumor

    Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis.</p> <p>The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults.</p> <p>Methods</p> <p>Design: Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index.</p> <p>Results</p> <p>There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders.</p> <p>Conclusion</p> <p>Urine pH and urine acid excretion do not predict osteoporosis risk.</p

    The Human Serum Metabolome

    Get PDF
    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca
    • …
    corecore