31 research outputs found
A practitioner's perspective
UIDB/04647/2020 UIDP/04647/2020The failure to meet global biodiversity targets clearly indicates the need for biodiversity management and conservation efforts to be more effective, and this in turn requires better understanding of the current barriers to success. Islands are known as biodiversity hotspots but nowhere has biodiversity loss been so acute as in island ecosystems. To identify the barriers to effective island ecosystem conservation, we conducted 32 semistructured interviews with conservation and management practitioners from island nations in the Western Indian Ocean region. Practitioners described 33 barriers to meeting their objectives under 12 overarching topics and suggested 14 solutions to these. Most barriers described by interviewees existed at organization level (55%), followed by national (24%) and site/project level (21%). Of the 33 barriers described by practitioners, the most commonly associated cause was limited capacity (23.5%), followed by lack of government coordination and limited resources (both 21.6%), lack of incentives (11.8%), poor leadership (11.7%), and finally interpersonal issues interfering with progress (9.8%). Most solutions centered around bridging capacity gaps. By defining these barriers, we can bring them forward for discussion and allocate resources and efforts to bridging them. Only by doing so can we increase the effectiveness of our management efforts and maximize our chances of achieving global biodiversity targets.publishersversionpublishe
Coral reef potential connectivity in the southwest Indian Ocean
The tropical southwest Indian Ocean is a coral biodiversity hotspot, with remote reefs physically connected by larval dispersal through eddies and a complex set of equatorial and boundary currents. Based on multidecadal, 2 km resolution hydrodynamic and larval dispersal models that incorporate temporal variability in dispersal, we find that powerful zonal currents, current bifurcations, and geographic isolation act as leaky dispersal barriers, partitioning the southwest Indian Ocean into clusters of reefs that tend to consistently retain larvae, and therefore gene flow, over many generations. Whilst exceptionally remote, the Chagos Archipelago can broadcast (and receive) considerable numbers of larvae to (and from) reefs across the wider southwest Indian Ocean, most significantly exchanging larvae with the Inner Islands of Seychelles, but also the Mozambique Channel region. Considering multi-generational dispersal indicates that most coral populations in the southwest Indian Ocean are physically connected within a few hundred steps of dispersal. These results suggest that regional biogeography and population structure can be largely attributed to geologically recent patterns of larval dispersal, although some notable discrepancies indicate that palaeogeography and environmental suitability also play an important role. The model output and connectivity matrices are available in full and will provide useful physical context to regional biogeography and connectivity studies, as well as supporting marine spatial planning efforts
Sources of marine debris for Seychelles and other remote islands in the western Indian Ocean
Vast quantities of debris are beaching at remote islands in the western Indian Ocean. We carry out marine dispersal simulations incorporating currents, waves, winds, beaching, and sinking, for both terrestrial and marine sources of debris, to predict where this debris comes from. Our results show that most terrestrial debris beaching at these remote western Indian Ocean islands drifts from Indonesia, India, and Sri Lanka. Debris associated with fisheries and shipping also poses a major risk. Debris accumulation at Seychelles is likely seasonal, peaking during February–April. This pattern is driven by monsoonal winds and may be amplified during positive Indian Ocean Dipole and El-Niño events. Our results underline the vulnerability of small island states to marine plastic pollution, and are a crucial step towards improved management of the issue. The trajectories used in this study are available for download, and our analyses can be rerun under different parameter choices.journal articl
Evaluating the Feasibility of Sustainable Seafood Labelling Programmes in Small Island Developing States: A Pilot Study of Artisanal Fisheries in Seychelles
The Republic of Seychelles is one of six African Small Island Developing States (SIDS) and has a marine-based economy reliant on fisheries and international tourism. Seychelles has been flagged by the United Nations as highly vulnerable to climate change. Climatic threats are compounded with population declines of key fishery species. A progressive national stance towards ocean sustainability and an emerging economy partially driven by tourists are two of several factors that make Seychelles a good candidate for a sustainable seafood labelling and consumption programme, which would provide market-based incentives for fishery harvesters, regulators, buyers and consumers to improve sustainable practices. To address the feasibility of such a programme, we conducted a pilot study, surveying 33 artisanal fishers and mapping supply chain structure to examine incentives and challenges. Questions addressed fishers’ years of experience, reliance on fishing for income, and flexibility in gear type and species targeted. Of the total number of respondents, 64% would like to see a programme implemented but only 34% thought it would be successful. Participants identified several barriers and benefits that primarily spanned socioeconomic and regulatory themes. Our pilot results indicate the sociocultural and economic impacts of sustainability programmes in Seychelles are as important as environmental considerations, a finding pertinent to anyone undertaking similar research efforts in other SIDS. We advocate for the necessity of thorough, location-based research and in-depth stakeholder consultation to elucidate economic, societal, behavioural and cultural factors that will affect the success of designing and implementing seafood labelling programmes in SIDS
Integration of population genetics with oceanographic models reveals strong connectivity among coral reefs across Seychelles
Many countries with tropical reef systems face hard choices preserving coral reefs in the face of climate change on limited budgets. One approach to maximising regional reef resilience is targeting management efforts and resources at reefs that export large numbers of larvae to other reefs. However, this requires reef connectivity to be quantified. To map coral connectivity in the Seychelles reef system we carried out a population genomic study of the Porites lutea species complex using 241 sequenced colonies from multiple islands. To identify oceanographic drivers of this connectivity and quantify variability, we further used a 2 km resolution regional ocean simulation coupled with a larval dispersal model to predict the flow of coral larvae between reef sites. Patterns of admixture and gene flow are broadly supported by model predictions, but the realised connectivity is greater than that predicted from model simulations. Both methods detected a biogeographic dispersal barrier between the Inner and Outer Islands of Seychelles. However, this barrier is permeable and substantial larval transport is possible across Seychelles, particularly for one of two putative species found in our genomic study. The broad agreement between predicted connectivity and observed genetic patterns supports the use of such larval dispersal simulations in reef system management in Seychelles and the wider region
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Unsanctioned imports: the costs of removing marine plastic litter from small island states
Small island states receive unprecedented amounts of the world’s plastic waste. In March 2019, we removed as much plastic litter as possible from Aldabra Atoll, a remote UNESCO World Heritage Site, and estimated the money and effort required to remove the remaining debris. We removed 25 tonnes at a cost of USD224,537, which equates to around USD10,000 per day of clean-up operations or USD8,900 per tonne of litter. We estimate that 513 tonnes (95% CI 212–814) remains on Aldabra, the largest accumulation reported for any single island. We calculate that removing it will cost approximately USD4.68 million and require 18,000 person-hours of labour. By weight, the composition is dominated by litter from the regional fishing industry (83%) and flip-flops from further afield (7%). Given the serious detrimental effects of plastic litter on marine ecosystems, we conclude that clean-up efforts are a vital management action for islands like Aldabra, despite the high financial cost and should be integrated alongside policies directed at ‘turning off the tap’. We recommend that international funding be made available for such efforts, especially considering the transboundary nature of both the marine plastic litter problem and the ecosystem services provided by biodiversity-rich islands
The costs of removing the unsanctioned import of marine plastic litter to small island states
Small island states receive unprecedented amounts of the world’s plastic waste. In March 2019, we removed as much plastic litter as possible from Aldabra Atoll, a remote UNESCO World Heritage Site, and estimated the money and effort required to remove the remaining debris. We removed 25 tonnes at a cost of USD224,537, which equates to around USD10,000 per day of clean-up operations or USD8,900 per tonne of litter. We estimate that 513 tonnes (95% CI 212–814) remains on Aldabra, the largest accumulation reported for any single island. We calculate that removing it will cost approximately USD4.68 million and require 18,000 person-hours of labour. By weight, the composition is dominated by litter from the regional fishing industry (83%) and flip-flops from further afield (7%). Given the serious detrimental effects of plastic litter on marine ecosystems, we conclude that clean-up efforts are a vital management action for islands like Aldabra, despite the high financial cost and should be integrated alongside policies directed at ‘turning off the tap’. We recommend that international funding be made available for such efforts, especially considering the transboundary nature of both the marine plastic litter problem and the ecosystem services provided by biodiversity-rich islands
Impacts of the 2014–2017 global bleaching event on a protected remote atoll in the Western Indian Ocean
The third global bleaching event caused prolonged elevated sea surface temperatures from 2014 to 2017 that heavily impacted coral reefs worldwide. This study determines changes in benthic community following this bleaching event at a remote UNESCO World Heritage Site in the Western Indian Ocean. Aldabra Atoll offers a rare opportunity to study global impacts in the absence of local anthropogenic stressors. Analysis of satellite-derived temperature data indicated that Aldabra was exposed to the highest bleaching-risk intensity of the past 20\ua0years during this bleaching event. Bleaching-risk conditions lasted from December 2015 to June 2016 close to the 4\ua0°C-week threshold, when bleaching is expected. Benthic cover was established pre- and post-bleaching from 21 transects across two reef locations (lagoonal reef, 2\ua0m depth; seaward reef, 5 and 15\ua0m depth). From a pre-bleaching benthic community in which living corals and epilithic algal matrix (EAM) predominated, Aldabra’s reefs switched to an EAM-dominated community 8\ua0months after bleaching. Soft corals declined by 93% of their overall pre-bleaching cover to < 1%. Although overall hard-coral cover was also reduced, the decline varied among depths and might indicate local adaptations of the lagoonal reef, due to greater variability in sea surface temperature compared to the seaward reef. With the exception of Isopora palifera, all taxomorphic coral groups experienced a decline following bleaching. Overall, Rhytisma experienced a near-complete extirpation, Acroporids (excluding I. palifera) and branching Poritids declined by more than 80%, Merulinidae lost ca. 60% of their pre-bleaching cover, while massive Poritids cover slightly decreased. Aldabra’s benthic community therefore underwent substantial changes following the 2014–2017 bleaching event and showed that live coral cover declines significantly even in protected areas isolated from local anthropogenic pressures
Sources of marine debris for Seychelles and other remote islands in the western Indian Ocean
Vast quantities of debris are beaching at remote islands in the western Indian Ocean. We carry out marine dispersal simulations incorporating currents, waves, winds, beaching, and sinking, for both terrestrial and marine sources of debris, to predict where this debris comes from. Our results show that most terrestrial debris beaching at these remote western Indian Ocean islands drifts from Indonesia, India, and Sri Lanka. Debris associated with fisheries and shipping also poses a major risk. Debris accumulation at Seychelles is likely seasonal, peaking during February–April. This pattern is driven by monsoonal winds and may be amplified during positive Indian Ocean Dipole and El-Niño events. Our results underline the vulnerability of small island states to marine plastic pollution, and are a crucial step towards improved management of the issue. The trajectories used in this study are available for download, and our analyses can be rerun under different parameter choices