8,723 research outputs found
Does woman + a network = career progression?
Question: I am an ambitious and talented junior manager who has recently been hired by FAB plc, a large multinational company. I am also a woman and, as part of my induction pack, have received an invitation to join FABFemmes - the in-company women's network. I don't think my gender has been an obstacle to my success thus far and so I don't really feel the need to join. But on the other hand I don't want to turn my back on something that might offer me a useful source of contacts to help me advance up the career ladder. What would be the best thing to do? - Ms Ambitious, UK
Entangled and disentangled evolution for a single atom in a driven cavity
For an atom in an externally driven cavity, we show that special initial
states lead to near-disentangled atom-field evolution, and superpositions of
these can lead to near maximally-entangled states. Somewhat counterintutively,
we find that (moderate) spontaneous emission in this system actually leads to a
transient increase in entanglement beyond the steady-state value. We also show
that a particular field correlation function could be used, in an experimental
setting, to track the time evolution of this entanglement
Barriers to development and progression of women entrepreneurs in Pakistan
This article would help integration of women entrepreneurs into the mainstream economy in Pakistan.In Pakistan, women entrepreneurs do not enjoy the same opportunities as men due to a number of deep-rooted discriminatory socio-cultural values and traditions. Furthermore, these restrictions can be observed within the support mechanisms that exist to assist such fledgling businesswomen. The economic potential of female entrepreneurs is not being realised as they suffer from a lack of access to capital, land, business premises, information technology, training and agency assistance. Inherent attitudes of a patriarchal society, that men are superior to women and that women are best suited to be homemakers, create formidable challenges. Women also receive little encouragement from some male family members, resulting in limited spatial mobility and a dearth of social capital. The research suggests that in order to foster development, multi-agency cooperation is required. The media, educational policy makers and government agencies could combine to provide women with improved access to business development services and facilitate local, regional and national networks
Band structure of semimagnetic Hg1-yMnyTe quantum wells
The band structure of semimagnetic Hg_1-yMn_yTe/Hg_1-xCd_xTe type-III quantum
wells has been calculated using eight-band kp model in an envelope function
approach. Details of the band structure calculations are given for the Mn free
case (y=0). A mean field approach is used to take the influence of the sp-d
exchange interaction on the band structure of QW's with low Mn concentrations
into account. The calculated Landau level fan diagram and the density of states
of a Hg_0.98Mn_0.02Te/Hg_0.3Cd_0.7Te QW are in good agreement with recent
experimental transport observations. The model can be used to interpret the
mutual influence of the two-dimensional confinement and the sp-d exchange
interaction on the transport properties of Hg_1-yMn_yTe/Hg_1-xCd_xTe QW's.Comment: 12 pages, 4 figure
First-principles envelope-function theory for lattice-matched semiconductor heterostructures
In this paper a multi-band envelope-function Hamiltonian for lattice-matched
semiconductor heterostructures is derived from first-principles norm-conserving
pseudopotentials. The theory is applicable to isovalent or heterovalent
heterostructures with macroscopically neutral interfaces and no spontaneous
bulk polarization. The key assumption -- proved in earlier numerical studies --
is that the heterostructure can be treated as a weak perturbation with respect
to some periodic reference crystal, with the nonlinear response small in
comparison to the linear response. Quadratic response theory is then used in
conjunction with k.p perturbation theory to develop a multi-band effective-mass
Hamiltonian (for slowly varying envelope functions) in which all interface
band-mixing effects are determined by the linear response. To within terms of
the same order as the position dependence of the effective mass, the quadratic
response contributes only a bulk band offset term and an interface dipole term,
both of which are diagonal in the effective-mass Hamiltonian. Long-range
multipole Coulomb fields arise in quantum wires or dots, but have no
qualitative effect in two-dimensional systems beyond a dipole contribution to
the band offsets.Comment: 25 pages, no figures, RevTeX4; v3: final published versio
Validation of frequency and mode extraction calculations from time-domain simulations of accelerator cavities
The recently developed frequency extraction algorithm [G.R. Werner and J.R.
Cary, J. Comp. Phys. 227, 5200 (2008)] that enables a simple FDTD algorithm to
be transformed into an efficient eigenmode solver is applied to a realistic
accelerator cavity modeled with embedded boundaries and Richardson
extrapolation. Previously, the frequency extraction method was shown to be
capable of distinguishing M degenerate modes by running M different simulations
and to permit mode extraction with minimal post-processing effort that only
requires solving a small eigenvalue problem. Realistic calculations for an
accelerator cavity are presented in this work to establish the validity of the
method for realistic modeling scenarios and to illustrate the complexities of
the computational validation process. The method is found to be able to extract
the frequencies with error that is less than a part in 10^5. The corrected
experimental and computed values differ by about one parts in 10^$, which is
accounted for (in largest part) by machining errors. The extraction of
frequencies and modes from accelerator cavities provides engineers and
physicists an understanding of potential cavity performance as it depends on
shape without incurring manufacture and measurement costs
Cosmological Solutions of Horava-Witten Theory
We discuss simple cosmological solutions of Horava-Witten theory describing
the strongly coupled heterotic string. At energies below the grand-unified
scale, the effective theory is five- not four-dimensional, where the additional
coordinate parameterizes a S^1/Z_2 orbifold. Furthermore, it admits no
homogeneous solutions. Rather, the vacuum state, appropriate for a reduction to
four-dimensional supersymmetric models, is a BPS domain wall. Relevant
cosmological solutions are those associated with this BPS state. In particular,
such solutions must be inhomogeneous, depending on the orbifold coordinate as
well as on time. We present two examples of this new type of cosmological
solution, obtained by separation of variables rather that by exchange of time
and radius coordinate applied to a brane solution, as in previous work. The
first example represents the analog of a rolling radii solution with the radii
specifying the geometry of the domain wall. This is generalized in the second
example to include a nontrivial ``Ramond-Ramond'' scalar.Comment: 21 pages, Latex 2e with amsmath, minor addition
In vitro inhibition of Eimeria tenella invasion of epithelial cells by phytochemicals
Resistance to coccidiostats and possible future restrictions on their use raise the need for alternative methods of reducing coccidiosis in poultry. The aim of this study was to evaluate the effect of selected phytochemicals on Eimeria tenella sporozoite invasion in vitro. Four phytochemicals were selected on the basis that they reduce the virulence of Eimeria spp. and/or provide immune modulatory benefits to host cells: betaine, carvacrol, curcumin and Echinacea purpurea extract (EP). MadinâDarby bovine kidney (MDBK) cells were covered by medium containing phytochemicals at the highest concentration which was non-toxic to the cells. Salinomycin 50 ÎŒg/ml was positive control; negative control was medium only. E. tenella (Houghton strain) sporozoites were added to wells and after incubation for 2, 4 or 20 h at 37 °C, cells were fixed and stained with hematoxylinâeosin. Ten evenly spaced fields per well were photographed and the percentage of cells invaded by sporozoites was calculated and normalized to the control. At 2 h, carvacrol, curcumin and EP showed a significantly lower percentage of sporozoite invasion than the untreated control; in contrast, betaine treatment represented a significantly higher invasion percentage. Combining carvacrol with EP inhibited E. tenella invasion more effectively than applying the compounds individually, but the further addition of curcumin did not reduce invasion further. In conclusion, this study shows that invasion of MDBK epithelial cells by E. tenella sporozoites is inhibited in the presence of carvacrol, curcumin, or EP and enhanced by betaine. There may be potential for developing these phytochemicals as anti-coccidial feed or water additives for poultry
Physical interpretation of stochastic Schroedinger equations in cavity QED
We propose physical interpretations for stochastic methods which have been
developed recently to describe the evolution of a quantum system interacting
with a reservoir. As opposed to the usual reduced density operator approach,
which refers to ensemble averages, these methods deal with the dynamics of
single realizations, and involve the solution of stochastic Schr\"odinger
equations. These procedures have been shown to be completely equivalent to the
master equation approach when ensemble averages are taken over many
realizations. We show that these techniques are not only convenient
mathematical tools for dissipative systems, but may actually correspond to
concrete physical processes, for any temperature of the reservoir. We consider
a mode of the electromagnetic field in a cavity interacting with a beam of two-
or three-level atoms, the field mode playing the role of a small system and the
atomic beam standing for a reservoir at finite temperature, the interaction
between them being given by the Jaynes-Cummings model. We show that the
evolution of the field states, under continuous monitoring of the state of the
atoms which leave the cavity, can be described in terms of either the Monte
Carlo Wave-Function (quantum jump) method or a stochastic Schr\"odinger
equation, depending on the system configuration. We also show that the Monte
Carlo Wave-Function approach leads, for finite temperatures, to localization
into jumping Fock states, while the diffusion equation method leads to
localization into states with a diffusing average photon number, which for
sufficiently small temperatures are close approximations to mildly squeezed
states.Comment: 12 pages RevTeX 3.0 + 6 figures (GIF format; for higher-resolution
postscript images or hardcopies contact the authors.) Submitted to Phys. Rev.
Accurate quadratic-response approximation for the self-consistent pseudopotential of semiconductor nanostructures
Quadratic-response theory is shown to provide a conceptually simple but
accurate approximation for the self-consistent one-electron potential of
semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs
and InGaAs/InP (001) superlattices using the local-density approximation to
density-functional theory and norm-conserving pseudopotentials without
spin-orbit coupling. When the reference crystal is chosen to be the
virtual-crystal average of the two bulk constituents, the absolute error in the
quadratic-response potential for Gamma(15) valence electrons is about 2 meV for
GaAs/AlAs and 5 meV for InGaAs/InP. Low-order multipole expansions of the
electron density and potential response are shown to be accurate throughout a
small neighborhood of each reciprocal lattice vector, thus providing a further
simplification that is confirmed to be valid for slowly varying envelope
functions. Although the linear response is about an order of magnitude larger
than the quadratic response, the quadratic terms are important both
quantitatively (if an accuracy of better than a few tens of meV is desired) and
qualitatively (due to their different symmetry and long-range dipole effects).Comment: 16 pages, 20 figures; v2: new section on limitations of theor
- âŠ