8,723 research outputs found

    Does woman + a network = career progression?

    Get PDF
    Question: I am an ambitious and talented junior manager who has recently been hired by FAB plc, a large multinational company. I am also a woman and, as part of my induction pack, have received an invitation to join FABFemmes - the in-company women's network. I don't think my gender has been an obstacle to my success thus far and so I don't really feel the need to join. But on the other hand I don't want to turn my back on something that might offer me a useful source of contacts to help me advance up the career ladder. What would be the best thing to do? - Ms Ambitious, UK

    Entangled and disentangled evolution for a single atom in a driven cavity

    Full text link
    For an atom in an externally driven cavity, we show that special initial states lead to near-disentangled atom-field evolution, and superpositions of these can lead to near maximally-entangled states. Somewhat counterintutively, we find that (moderate) spontaneous emission in this system actually leads to a transient increase in entanglement beyond the steady-state value. We also show that a particular field correlation function could be used, in an experimental setting, to track the time evolution of this entanglement

    Barriers to development and progression of women entrepreneurs in Pakistan

    Get PDF
    This article would help integration of women entrepreneurs into the mainstream economy in Pakistan.In Pakistan, women entrepreneurs do not enjoy the same opportunities as men due to a number of deep-rooted discriminatory socio-cultural values and traditions. Furthermore, these restrictions can be observed within the support mechanisms that exist to assist such fledgling businesswomen. The economic potential of female entrepreneurs is not being realised as they suffer from a lack of access to capital, land, business premises, information technology, training and agency assistance. Inherent attitudes of a patriarchal society, that men are superior to women and that women are best suited to be homemakers, create formidable challenges. Women also receive little encouragement from some male family members, resulting in limited spatial mobility and a dearth of social capital. The research suggests that in order to foster development, multi-agency cooperation is required. The media, educational policy makers and government agencies could combine to provide women with improved access to business development services and facilitate local, regional and national networks

    Band structure of semimagnetic Hg1-yMnyTe quantum wells

    Full text link
    The band structure of semimagnetic Hg_1-yMn_yTe/Hg_1-xCd_xTe type-III quantum wells has been calculated using eight-band kp model in an envelope function approach. Details of the band structure calculations are given for the Mn free case (y=0). A mean field approach is used to take the influence of the sp-d exchange interaction on the band structure of QW's with low Mn concentrations into account. The calculated Landau level fan diagram and the density of states of a Hg_0.98Mn_0.02Te/Hg_0.3Cd_0.7Te QW are in good agreement with recent experimental transport observations. The model can be used to interpret the mutual influence of the two-dimensional confinement and the sp-d exchange interaction on the transport properties of Hg_1-yMn_yTe/Hg_1-xCd_xTe QW's.Comment: 12 pages, 4 figure

    First-principles envelope-function theory for lattice-matched semiconductor heterostructures

    Full text link
    In this paper a multi-band envelope-function Hamiltonian for lattice-matched semiconductor heterostructures is derived from first-principles norm-conserving pseudopotentials. The theory is applicable to isovalent or heterovalent heterostructures with macroscopically neutral interfaces and no spontaneous bulk polarization. The key assumption -- proved in earlier numerical studies -- is that the heterostructure can be treated as a weak perturbation with respect to some periodic reference crystal, with the nonlinear response small in comparison to the linear response. Quadratic response theory is then used in conjunction with k.p perturbation theory to develop a multi-band effective-mass Hamiltonian (for slowly varying envelope functions) in which all interface band-mixing effects are determined by the linear response. To within terms of the same order as the position dependence of the effective mass, the quadratic response contributes only a bulk band offset term and an interface dipole term, both of which are diagonal in the effective-mass Hamiltonian. Long-range multipole Coulomb fields arise in quantum wires or dots, but have no qualitative effect in two-dimensional systems beyond a dipole contribution to the band offsets.Comment: 25 pages, no figures, RevTeX4; v3: final published versio

    Validation of frequency and mode extraction calculations from time-domain simulations of accelerator cavities

    Full text link
    The recently developed frequency extraction algorithm [G.R. Werner and J.R. Cary, J. Comp. Phys. 227, 5200 (2008)] that enables a simple FDTD algorithm to be transformed into an efficient eigenmode solver is applied to a realistic accelerator cavity modeled with embedded boundaries and Richardson extrapolation. Previously, the frequency extraction method was shown to be capable of distinguishing M degenerate modes by running M different simulations and to permit mode extraction with minimal post-processing effort that only requires solving a small eigenvalue problem. Realistic calculations for an accelerator cavity are presented in this work to establish the validity of the method for realistic modeling scenarios and to illustrate the complexities of the computational validation process. The method is found to be able to extract the frequencies with error that is less than a part in 10^5. The corrected experimental and computed values differ by about one parts in 10^$, which is accounted for (in largest part) by machining errors. The extraction of frequencies and modes from accelerator cavities provides engineers and physicists an understanding of potential cavity performance as it depends on shape without incurring manufacture and measurement costs

    Cosmological Solutions of Horava-Witten Theory

    Get PDF
    We discuss simple cosmological solutions of Horava-Witten theory describing the strongly coupled heterotic string. At energies below the grand-unified scale, the effective theory is five- not four-dimensional, where the additional coordinate parameterizes a S^1/Z_2 orbifold. Furthermore, it admits no homogeneous solutions. Rather, the vacuum state, appropriate for a reduction to four-dimensional supersymmetric models, is a BPS domain wall. Relevant cosmological solutions are those associated with this BPS state. In particular, such solutions must be inhomogeneous, depending on the orbifold coordinate as well as on time. We present two examples of this new type of cosmological solution, obtained by separation of variables rather that by exchange of time and radius coordinate applied to a brane solution, as in previous work. The first example represents the analog of a rolling radii solution with the radii specifying the geometry of the domain wall. This is generalized in the second example to include a nontrivial ``Ramond-Ramond'' scalar.Comment: 21 pages, Latex 2e with amsmath, minor addition

    In vitro inhibition of Eimeria tenella invasion of epithelial cells by phytochemicals

    Get PDF
    Resistance to coccidiostats and possible future restrictions on their use raise the need for alternative methods of reducing coccidiosis in poultry. The aim of this study was to evaluate the effect of selected phytochemicals on Eimeria tenella sporozoite invasion in vitro. Four phytochemicals were selected on the basis that they reduce the virulence of Eimeria spp. and/or provide immune modulatory benefits to host cells: betaine, carvacrol, curcumin and Echinacea purpurea extract (EP). Madin–Darby bovine kidney (MDBK) cells were covered by medium containing phytochemicals at the highest concentration which was non-toxic to the cells. Salinomycin 50 ÎŒg/ml was positive control; negative control was medium only. E. tenella (Houghton strain) sporozoites were added to wells and after incubation for 2, 4 or 20 h at 37 °C, cells were fixed and stained with hematoxylin–eosin. Ten evenly spaced fields per well were photographed and the percentage of cells invaded by sporozoites was calculated and normalized to the control. At 2 h, carvacrol, curcumin and EP showed a significantly lower percentage of sporozoite invasion than the untreated control; in contrast, betaine treatment represented a significantly higher invasion percentage. Combining carvacrol with EP inhibited E. tenella invasion more effectively than applying the compounds individually, but the further addition of curcumin did not reduce invasion further. In conclusion, this study shows that invasion of MDBK epithelial cells by E. tenella sporozoites is inhibited in the presence of carvacrol, curcumin, or EP and enhanced by betaine. There may be potential for developing these phytochemicals as anti-coccidial feed or water additives for poultry

    Physical interpretation of stochastic Schroedinger equations in cavity QED

    Full text link
    We propose physical interpretations for stochastic methods which have been developed recently to describe the evolution of a quantum system interacting with a reservoir. As opposed to the usual reduced density operator approach, which refers to ensemble averages, these methods deal with the dynamics of single realizations, and involve the solution of stochastic Schr\"odinger equations. These procedures have been shown to be completely equivalent to the master equation approach when ensemble averages are taken over many realizations. We show that these techniques are not only convenient mathematical tools for dissipative systems, but may actually correspond to concrete physical processes, for any temperature of the reservoir. We consider a mode of the electromagnetic field in a cavity interacting with a beam of two- or three-level atoms, the field mode playing the role of a small system and the atomic beam standing for a reservoir at finite temperature, the interaction between them being given by the Jaynes-Cummings model. We show that the evolution of the field states, under continuous monitoring of the state of the atoms which leave the cavity, can be described in terms of either the Monte Carlo Wave-Function (quantum jump) method or a stochastic Schr\"odinger equation, depending on the system configuration. We also show that the Monte Carlo Wave-Function approach leads, for finite temperatures, to localization into jumping Fock states, while the diffusion equation method leads to localization into states with a diffusing average photon number, which for sufficiently small temperatures are close approximations to mildly squeezed states.Comment: 12 pages RevTeX 3.0 + 6 figures (GIF format; for higher-resolution postscript images or hardcopies contact the authors.) Submitted to Phys. Rev.

    Accurate quadratic-response approximation for the self-consistent pseudopotential of semiconductor nanostructures

    Full text link
    Quadratic-response theory is shown to provide a conceptually simple but accurate approximation for the self-consistent one-electron potential of semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs and InGaAs/InP (001) superlattices using the local-density approximation to density-functional theory and norm-conserving pseudopotentials without spin-orbit coupling. When the reference crystal is chosen to be the virtual-crystal average of the two bulk constituents, the absolute error in the quadratic-response potential for Gamma(15) valence electrons is about 2 meV for GaAs/AlAs and 5 meV for InGaAs/InP. Low-order multipole expansions of the electron density and potential response are shown to be accurate throughout a small neighborhood of each reciprocal lattice vector, thus providing a further simplification that is confirmed to be valid for slowly varying envelope functions. Although the linear response is about an order of magnitude larger than the quadratic response, the quadratic terms are important both quantitatively (if an accuracy of better than a few tens of meV is desired) and qualitatively (due to their different symmetry and long-range dipole effects).Comment: 16 pages, 20 figures; v2: new section on limitations of theor
    • 

    corecore