40 research outputs found

    Sparse-matrix wavefront reconstruction: simulations and experiments

    Get PDF
    Adaptive optics systems with Shack-Hartmann wavefront sensors require reconstruction of the atmospheric phase error from subaperture slope measurements, with every sensor in the array being used in the computation of each actuator command. This fully populated reconstruction matrix can result in a significant computational burden for adaptive optics systems with large numbers of actuators. A method for generating sparse wavefront reconstruction matrices for adaptive optics is proposed. The method exploits the relevance of nearby subaperture slope measurements for control of an individual actuator, and relies upon the limited extent of the influence function for a zonal deformable mirror. Relying only on nearby sensor information can significantly reduce the calculation time for wavefront reconstruction. In addition, a hierarchic controller is proposed to recover some of the global wavefront information. The performance of these sparse wavefront reconstruction matrices was evaluated in simulation, and tested on the Palomar Adaptive Optics System. This paper presents some initial results from the simulations and experiments

    Optical characterization of the PALM-3000 3388-actuator deformable mirror

    Get PDF
    We describe the lab characterization of the new 3,388-actuator deformable mirror (DM3388) produced by Xinetics, Inc. for the PALM-3000 adaptive optics (AO) system1 under development by Jet Propulsion Laboratory and Caltech Optical Observatories. This square grid 66-by-66 actuator mirror has the largest number of actuators of any deformable mirror currently available and will enable high-contrast imaging for direct exoplanet imaging science at the Palomar 200" diameter Hale Telescope. We present optical measurements of the powered and unpowered mirror surface, influence functions, linearity of the actuators, and creep of the actuators. We also quantify the effect of changes in humidity

    Adaptive optics imaging of a stellar occultation by Titan

    Get PDF
    We present resolved images of the occultation of a binary star by Titan, recorded with the Palomar Observatory adaptive optics system on 20 December 2001 UT. These constitute the first resolved observations of a stellar occultation by a small body, and demonstrate several unique capabilities of diffraction-limited imaging systems for the study of planetary atmospheres. Two refracted stellar images are visible on Titan's limb throughout both events, displaying scintillations due to local density variations. Precise relative astrometry of the refracted stellar images with respect to the unnocculted component of the binary allows us to directly measure their altitude in Titan's atmosphere. Their changing positions also lead to simple demonstration of the finite oblateness of surfaces of constant pressure in Titan's mid-latitude stratosphere, consistent with the only previous measurement of Titan's zonal wind field

    Demonstration of on sky contrast improvement using the Modified Gerchberg-Saxton algorithm at the Palomar Observatory

    Get PDF
    We have successfully demonstrated significant improvements in the high contrast detection limit of the Well-Corrected Subaperture (WCS) using a number of steps aimed at reducing non-common path (NCP) wavefront errors, including the Autonomous Phase Retrieval Calibration (APRC) software package developed at the Jet Propulsion Laboratory (JPL) for the Palomar adaptive optics instrument (PALAO). APRC utilizes the Modified Gerchberg-Saxton (MGS) wavefront sensing algorithm, also developed at JPL. The WCS delivers such excellent correction of the atmosphere that NCP wavefront errors not sensed by PALAO but present at the coronagraphic image plane begin to factor heavily as a limit to contrast. The APRC program was implemented to reduce these NCP wavefront errors from 110 nm to 35 nm (rms) in the lab, and now these exceptional results have been extended to targets on the sky for the first time, leading to a significant suppression of speckle noise. Consequently we now report a contrast level of very nearly 1×10^(-4) at separations of 2λ/D before the data is post processed, and 1×10^(-5) after post processing. We describe here the major components of our instrument, the work done to improve the NCP wavefront errors, and the ensuing excellent on sky results, including the detection of the three exoplanets orbiting the star HR8799

    Sparse-matrix wavefront reconstruction: simulations and experiments

    Get PDF
    Adaptive optics systems with Shack-Hartmann wavefront sensors require reconstruction of the atmospheric phase error from subaperture slope measurements, with every sensor in the array being used in the computation of each actuator command. This fully populated reconstruction matrix can result in a significant computational burden for adaptive optics systems with large numbers of actuators. A method for generating sparse wavefront reconstruction matrices for adaptive optics is proposed. The method exploits the relevance of nearby subaperture slope measurements for control of an individual actuator, and relies upon the limited extent of the influence function for a zonal deformable mirror. Relying only on nearby sensor information can significantly reduce the calculation time for wavefront reconstruction. In addition, a hierarchic controller is proposed to recover some of the global wavefront information. The performance of these sparse wavefront reconstruction matrices was evaluated in simulation, and tested on the Palomar Adaptive Optics System. This paper presents some initial results from the simulations and experiments

    Adaptive optics imaging of a stellar occultation by Titan

    Get PDF
    We present resolved images of the occultation of a binary star by Titan, recorded with the Palomar Observatory adaptive optics system on 20 December 2001 UT. These constitute the first resolved observations of a stellar occultation by a small body, and demonstrate several unique capabilities of diffraction-limited imaging systems for the study of planetary atmospheres. Two refracted stellar images are visible on Titan's limb throughout both events, displaying scintillations due to local density variations. Precise relative astrometry of the refracted stellar images with respect to the unnocculted component of the binary allows us to directly measure their altitude in Titan's atmosphere. Their changing positions also lead to simple demonstration of the finite oblateness of surfaces of constant pressure in Titan's mid-latitude stratosphere, consistent with the only previous measurement of Titan's zonal wind field

    Real-time wavefront control for the PALM-3000 high order adaptive optics system

    Get PDF
    We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. We demonstrate the architecture is capable of supporting the most computation and memory intensive wavefront reconstruction method (vector-matrix-multiply) at frame rates up to 2 KHz with latency under 250 &mgr;s for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64x64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 349 actuator "woofer" DM. This architecture can easily scale up to support larger AO systems at higher rates and lower latency

    Status of the PALM-3000 high order adaptive optics instrument

    Get PDF
    We report on the status of PALM-3000, the second generation adaptive optics instrument for the 5.1 meter Hale telescope at Palomar Observatory. PALM-3000 was released as a facility class instrument in October 2011, and has since been used on the Hale telescope a total of over 250 nights. In the past year, the PALM-3000 team introduced several instrument upgrades, including the release of the 32x32 pupil sampling mode which allows for correction on fainter guide stars, the upgrade of wavefront sensor relay optics, the diagnosis and repair of hardware problems, and the release of software improvements. We describe the performance of the PALM-3000 instrument as a result of these upgrades, and provide on-sky results. In the 32x32 pupil sampling mode (15.8 cm per subaperture), we have achieved K-band strehl ratios as high as 11% on a 14.4 mv star, and in the 64x64 pupil sampling mode (8.1 cm per subaperture), we have achieved K-band strehl ratios as high as 86% on stars brighter than 7th m_v

    Characterization of the Atmosphere of the Hot Jupiter HAT-P-32Ab and the M-dwarf Companion HAT-P-32B

    Get PDF
    Copyright © 2015 IOP PublishingWe report secondary eclipse photometry of the hot Jupiter HAT-P-32Ab, taken with Hale/Wide-field Infra-Red Camera (WIRC) in H and KS bands and with Spitzer/IRAC at 3.6 and 4.5 μm. We carried out adaptive optics imaging of the planet host star HAT-P-32A and its companion HAT-P-32B in the near-IR and the visible. We clearly resolve the two stars from each other and find a separation of 2.''923 ± 0.''004 and a position angle 110fdg64 ± 0fdg12. We measure the flux ratios of the binary in g'r'i'z' and H and KS bands, and determine T eff= 3565 ± 82 K for the companion star, corresponding to an M1.5 dwarf. We use PHOENIX stellar atmosphere models to correct the dilution of the secondary eclipse depths of the hot Jupiter due to the presence of the M1.5 companion. We also improve the secondary eclipse photometry by accounting for the non-classical, flux-dependent nonlinearity of the WIRC IR detector in the H band. We measure planet-to-star flux ratios of 0.090% ± 0.033%, 0.178% ± 0.057%, 0.364% ± 0.016%, and 0.438% ± 0.020% in the H, KS , 3.6 and 4.5 μm bands, respectively. We compare these with planetary atmospheric models, and find they prefer an atmosphere with a temperature inversion and inefficient heat redistribution. However, we also find that the data are equally well described by a blackbody model for the planet with T p = 2042 ± 50 K. Finally, we measure a secondary eclipse timing offset of 0.3 ± 1.3 minutes from the predicted mid-eclipse time, which constrains e = 0.0072 +0.0700}_-0.0064 when combined with radialNASACenter for Exoplanets and Habitable Worlds at the Pennsylvania State UniversityPennsylvania State UniversityEberly College of SciencePennsylvania Space Grant ConsortiumNational Science Foundation - Graduate Research Fellowship ProgramNatural Science and Engineering Research Council of CanadaJPL/SpitzerCalifornia Institute of Technology - NASA Sagan FellowshipAlfred P. Sloan FoundationCalifornia Institute of TechnologyInter-University Centre for Astronomy and AstrophysicsNational Science FoundationMt. Cuba Astronomical FoundationSamuel Oschi

    Design and performance of the PALM-3000 3.5 kHz upgrade

    Get PDF
    PALM-3000 (P3K), the second-generation adaptive optics (AO) instrument for the 5.1 meter Hale telescope at Palomar Observatory, underwent a significant upgrade to its wavefront sensor (WFS) arm and real-time control (RTC) system in late 2019. Main features of this upgrade include an EMCCD WFS camera capable of 3.5 kHz framerates and advanced Digital Signal Processor (DSP) boards to replace the aging GPU based real-time control system. With this upgrade P3K is able to maintain a lock on natural guide stars fainter than mV=16. Here we present the design and on-sky re-commissioning results of the upgraded system
    corecore