6,750 research outputs found
Shear horizontal (SH) ultrasound wave propagation around smooth corners
Shear horizontal (SH) ultrasound guided waves are being used in an increasing number of non-destructive testing (NDT) applications. One advantage SH waves have over some wave types, is their ability to propagate around curved surfaces with little energy loss; to understand the geometries around which they could propagate, the wave reflection must be quantified. A 0.83 mm thick aluminium sheet was placed in a bending machine, and a shallow bend was introduced. Periodically-poled magnet (PPM) electromagnetic acoustic transducers (EMATs), for emission and reception of SH waves, were placed on the same side of the bend, so that reflected waves were received. Additional bending of the sheet demonstrated a clear relationship between bend angles and the reflected signal. Models suggest that the reflection is a linear superposition of the reflections from each bend segment, such that sharp turns lead to a larger peak-to-peak amplitude, in part due to increased phase coherence
Application of Pade Approximants to Determination of alpha_s(M_Z^2) from Hadronic Event Shape Observables in e+e- Annihilation
We have applied Pade approximants to perturbative QCD calculations of event
shape observables in e+e- --> hadrons. We used the exact O(alpha_s^2)
prediction and the [0/1] Pade approximant to estimate the O(alpha_s^3) term for
15 observables, and in each case determined alpha_s(M_Z^2) from comparison with
hadronic Z^0 decay data from the SLD experiment. We found the scatter among the
alpha_s(M_Z^2) values to be significantly reduced compared with the standard
O(alpha_s^2) determination, implying that the Pade method provides at least a
partial approximation of higher-order perturbative contributions to event shape
observables.Comment: 15 pages, 1 EPS figure, Submitted to Physics Letters
A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets
We show that under certain circumstances the differences between the
absorption mean and Planck mean opacities can lead to multiple solutions for an
LTE atmospheric structure. Since the absorption and Planck mean opacities are
not expected to differ significantly in the usual case of radiative
equilibrium, non-irradiated atmospheres, the most interesting situations where
the effect may play a role are strongly irradiated stars and planets, and also
possibly structures where there is a significant deposition of mechanical
energy, such as stellar chromospheres and accretion disks. We have presented an
illustrative example of a strongly irradiated giant planet where the
bifurcation effect is predicted to occur for a certain range of distances from
the star.Comment: 22 pages, 6 figures, submitted to Ap
Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres
We calculate detailed chemical abundance profiles for a variety of brown
dwarf and extrasolar giant planet atmosphere models, focusing in particular on
Gliese 229B, and derive the systematics of the changes in the dominant
reservoirs of the major elements with altitude and temperature. We assume an
Anders and Grevesse (1989) solar composition of 27 chemical elements and track
330 gas--phase species, including the monatomic forms of the elements, as well
as about 120 condensates. We address the issue of the formation and composition
of clouds in the cool atmospheres of substellar objects and explore the rain
out and depletion of refractories. We conclude that the opacity of clouds of
low--temperature (900 K), small--radius condensibles (specific chlorides
and sulfides), may be responsible for the steep spectrum of Gliese 229B
observed in the near infrared below 1 \mic. Furthermore, we assemble a
temperature sequence of chemical transitions in substellar atmospheres that may
be used to anchor and define a sequence of spectral types for substellar
objects with Ts from 2200 K to 100 K.Comment: 57 pages total, LaTeX, 14 figures, 5 tables, also available in
uuencoded, gzipped, and tarred form via anonymous ftp at
www.astrophysics.arizona.edu (cd to pub/burrows/chem), submitted to Ap.
The magnetic field effect on the transport and efficiency of group III tris(8-hydroxyquinoline) organic light emitting diodes
Copyright 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 103, 103715 (2008) and may be found at
Distances to the high galactic latitude molecular clouds G192-67 and MBM 23-24
We report on distance determinations for two high Galactic latitude cloud
complexes, G192-67 and MBM 23-24. No distance determination exists in the
literature for either cloud. Thirty-four early type stars were observed towards
the two clouds, more than half of which have parallaxes measured by the
Hipparcos satellite. For the remaining stars we have made spectroscopic
distance estimates. The data consist of high resolution echelle spectra
centered on the Na I D lines, and were obtained over six nights at the Coude
Feed telescope at Kitt Peak National Observatory. Interstellar absorption lines
were detected towards some of the stars, enabling estimates of the distances to
the clouds of 109 +/- 14 pc for G192-67, and of 139 +/- 33 pc for MBM 23-24. We
discuss the relationship of these clouds to other ISM features such as the
Local Hot Bubble and the local cavity in neutral hydrogen.Comment: 15 pages, 6 embedded figures, to be published in the ApJ Vol. 516,
No.
Relative entropy via non-sequential recursive pair substitutions
The entropy of an ergodic source is the limit of properly rescaled 1-block
entropies of sources obtained applying successive non-sequential recursive
pairs substitutions (see P. Grassberger 2002 ArXiv:physics/0207023 and D.
Benedetto, E. Caglioti and D. Gabrielli 2006 Jour. Stat. Mech. Theo. Exp. 09
doi:10.1088/1742.-5468/2006/09/P09011). In this paper we prove that the cross
entropy and the Kullback-Leibler divergence can be obtained in a similar way.Comment: 13 pages , 2 figure
Proper Motions of H-alpha filaments in the Supernova Remnant RCW 86
We present a proper motion study of the eastern shock-region of the supernova
remnant RCW 86 (MSH 14-63, G315.4-2.3), based on optical observations carried
out with VLT/FORS2 in 2007 and 2010. For both the northeastern and southeastern
regions, we measure an average proper motion of H-alpha filaments of 0.10 +/-
0.02 arcsec/yr, corresponding to 1200 +/- 200 km/s at 2.5kpc. There is
substantial variation in the derived proper motions, indicating shock
velocities ranging from just below 700 km/s to above 2200 km/s.
The optical proper motion is lower than the previously measured X-ray proper
motion of northeastern region. The new measurements are consistent with the
previously measured proton temperature of 2.3 +/- 0.3 keV, assuming no
cosmic-ray acceleration. However, within the uncertainties, moderately
efficient (< 27 per cent) shock acceleration is still possible. The combination
of optical proper motion and proton temperature rule out the possibility that
RCW 86 has a distance less than 1.5kpc.
The similarity of the proper motions in the northeast and southeast is
peculiar, given the different densities and X-ray emission properties of the
regions. The northeastern region has lower densities and the X-ray emission is
synchrotron dominated, suggesting that the shock velocities should be higher
than in the southeastern, thermal X-ray dominated, region. A possible solution
is that the H-alpha emitting filaments are biased toward denser regions, with
lower shock velocities. Alternatively, in the northeast the shock velocity may
have decreased rapidly during the past 200yr, and the X-ray synchrotron
emission is an afterglow from a period when the shock velocity was higher.Comment: Accepted for publication in MNRA
Testing the standard fireball model of GRBs using late X-ray afterglows measured by Swift
We show that all X-ray decay curves of GRBs measured by Swift can be fitted
using one or two components both of which have exactly the same functional form
comprised of an early falling exponential phase followed by a power law decay.
The 1st component contains the prompt gamma-ray emission and the initial X-ray
decay. The 2nd component appears later, has a much longer duration and is
present for ~80% of GRBs. It most likely arises from the external shock which
eventually develops into the X-ray afterglow. In the remaining ~20% of GRBs the
initial X-ray decay of the 1st component fades more slowly than the 2nd and
dominates at late times to form an afterglow but it is not clear what the
origin of this emission is.
The temporal decay parameters and gamma/X-ray spectral indices derived for
107 GRBs are compared to the expectations of the standard fireball model
including a search for possible "jet breaks". For ~50% of GRBs the observed
afterglow is in accord with the model but for the rest the temporal and
spectral indices do not conform to the expected closure relations and are
suggestive of continued, late, energy injection. We identify a few possible jet
breaks but there are many examples where such breaks are predicted but are
absent.
The time, T_a, at which the exponential phase of the 2nd component changes to
a final powerlaw decay afterglow is correlated with the peak of the gamma-ray
spectrum, E_peak. This is analogous to the Ghirlanda relation, indicating that
this time is in some way related to optically observed break times measured for
pre-Swift bursts.Comment: submitted to Ap
Contributions of After School Programs to the Development of Fundamental Movement Skills in Children
International Journal of Exercise Science 7(3) : 236-249, 2014. Fundamental movement skill (FMS) proficiency or the ability to perform basic skills (e.g., throwing, catching and jumping) has been linked to participation in lifelong physical activity. FMS proficiency amongst children has declined in the previous 15 years, with more children performing FMS at a low-mastery level. These declines may help explain the insufficient levels of participation in health promoting physical activity seen in today’s youth. The after school time period (e.g., 3 to 6 p.m.), is increasingly considered an opportune time for physical activity interventions. To date, little research has examined the potential for after school programming to improve FMS proficiency. Participants (n=40, 6-10 years) of two existent physical activity based after school programs, a low-organized games and a sports-based program, were pre- and post-tested for FMS proficiency using the Test of Gross Motor Development-2 (TGMD-2) over an 11-week period. The sports-based program participants showed no improvement in FMS over the 11-week study (p=0.91, eta2=0.00) and the games-based program participants significantly improved their proficiency (p=0.00, eta2=0.30). No significant (p=0.13, eta2 = 0.06), differences were found in change in FMS scores between the low-organized games program participants and the sport-based program participants. These results suggest that after school programs with a low-organized games-based focus may support a moderate improvement in FMS proficiency in young children. Better training of after school program leaders on how to teach FMS may be necessary to assist children in acquiring sufficient proficiency in FMS
- …