6,750 research outputs found

    Shear horizontal (SH) ultrasound wave propagation around smooth corners

    Get PDF
    Shear horizontal (SH) ultrasound guided waves are being used in an increasing number of non-destructive testing (NDT) applications. One advantage SH waves have over some wave types, is their ability to propagate around curved surfaces with little energy loss; to understand the geometries around which they could propagate, the wave reflection must be quantified. A 0.83 mm thick aluminium sheet was placed in a bending machine, and a shallow bend was introduced. Periodically-poled magnet (PPM) electromagnetic acoustic transducers (EMATs), for emission and reception of SH waves, were placed on the same side of the bend, so that reflected waves were received. Additional bending of the sheet demonstrated a clear relationship between bend angles and the reflected signal. Models suggest that the reflection is a linear superposition of the reflections from each bend segment, such that sharp turns lead to a larger peak-to-peak amplitude, in part due to increased phase coherence

    Application of Pade Approximants to Determination of alpha_s(M_Z^2) from Hadronic Event Shape Observables in e+e- Annihilation

    Full text link
    We have applied Pade approximants to perturbative QCD calculations of event shape observables in e+e- --> hadrons. We used the exact O(alpha_s^2) prediction and the [0/1] Pade approximant to estimate the O(alpha_s^3) term for 15 observables, and in each case determined alpha_s(M_Z^2) from comparison with hadronic Z^0 decay data from the SLD experiment. We found the scatter among the alpha_s(M_Z^2) values to be significantly reduced compared with the standard O(alpha_s^2) determination, implying that the Pade method provides at least a partial approximation of higher-order perturbative contributions to event shape observables.Comment: 15 pages, 1 EPS figure, Submitted to Physics Letters

    A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets

    Full text link
    We show that under certain circumstances the differences between the absorption mean and Planck mean opacities can lead to multiple solutions for an LTE atmospheric structure. Since the absorption and Planck mean opacities are not expected to differ significantly in the usual case of radiative equilibrium, non-irradiated atmospheres, the most interesting situations where the effect may play a role are strongly irradiated stars and planets, and also possibly structures where there is a significant deposition of mechanical energy, such as stellar chromospheres and accretion disks. We have presented an illustrative example of a strongly irradiated giant planet where the bifurcation effect is predicted to occur for a certain range of distances from the star.Comment: 22 pages, 6 figures, submitted to Ap

    Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres

    Full text link
    We calculate detailed chemical abundance profiles for a variety of brown dwarf and extrasolar giant planet atmosphere models, focusing in particular on Gliese 229B, and derive the systematics of the changes in the dominant reservoirs of the major elements with altitude and temperature. We assume an Anders and Grevesse (1989) solar composition of 27 chemical elements and track 330 gas--phase species, including the monatomic forms of the elements, as well as about 120 condensates. We address the issue of the formation and composition of clouds in the cool atmospheres of substellar objects and explore the rain out and depletion of refractories. We conclude that the opacity of clouds of low--temperature (≤\le900 K), small--radius condensibles (specific chlorides and sulfides), may be responsible for the steep spectrum of Gliese 229B observed in the near infrared below 1 \mic. Furthermore, we assemble a temperature sequence of chemical transitions in substellar atmospheres that may be used to anchor and define a sequence of spectral types for substellar objects with Teff_{eff}s from ∼\sim2200 K to ∼\sim100 K.Comment: 57 pages total, LaTeX, 14 figures, 5 tables, also available in uuencoded, gzipped, and tarred form via anonymous ftp at www.astrophysics.arizona.edu (cd to pub/burrows/chem), submitted to Ap.

    The magnetic field effect on the transport and efficiency of group III tris(8-hydroxyquinoline) organic light emitting diodes

    Get PDF
    Copyright 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 103, 103715 (2008) and may be found at

    Distances to the high galactic latitude molecular clouds G192-67 and MBM 23-24

    Get PDF
    We report on distance determinations for two high Galactic latitude cloud complexes, G192-67 and MBM 23-24. No distance determination exists in the literature for either cloud. Thirty-four early type stars were observed towards the two clouds, more than half of which have parallaxes measured by the Hipparcos satellite. For the remaining stars we have made spectroscopic distance estimates. The data consist of high resolution echelle spectra centered on the Na I D lines, and were obtained over six nights at the Coude Feed telescope at Kitt Peak National Observatory. Interstellar absorption lines were detected towards some of the stars, enabling estimates of the distances to the clouds of 109 +/- 14 pc for G192-67, and of 139 +/- 33 pc for MBM 23-24. We discuss the relationship of these clouds to other ISM features such as the Local Hot Bubble and the local cavity in neutral hydrogen.Comment: 15 pages, 6 embedded figures, to be published in the ApJ Vol. 516, No.

    Relative entropy via non-sequential recursive pair substitutions

    Full text link
    The entropy of an ergodic source is the limit of properly rescaled 1-block entropies of sources obtained applying successive non-sequential recursive pairs substitutions (see P. Grassberger 2002 ArXiv:physics/0207023 and D. Benedetto, E. Caglioti and D. Gabrielli 2006 Jour. Stat. Mech. Theo. Exp. 09 doi:10.1088/1742.-5468/2006/09/P09011). In this paper we prove that the cross entropy and the Kullback-Leibler divergence can be obtained in a similar way.Comment: 13 pages , 2 figure

    Proper Motions of H-alpha filaments in the Supernova Remnant RCW 86

    Get PDF
    We present a proper motion study of the eastern shock-region of the supernova remnant RCW 86 (MSH 14-63, G315.4-2.3), based on optical observations carried out with VLT/FORS2 in 2007 and 2010. For both the northeastern and southeastern regions, we measure an average proper motion of H-alpha filaments of 0.10 +/- 0.02 arcsec/yr, corresponding to 1200 +/- 200 km/s at 2.5kpc. There is substantial variation in the derived proper motions, indicating shock velocities ranging from just below 700 km/s to above 2200 km/s. The optical proper motion is lower than the previously measured X-ray proper motion of northeastern region. The new measurements are consistent with the previously measured proton temperature of 2.3 +/- 0.3 keV, assuming no cosmic-ray acceleration. However, within the uncertainties, moderately efficient (< 27 per cent) shock acceleration is still possible. The combination of optical proper motion and proton temperature rule out the possibility that RCW 86 has a distance less than 1.5kpc. The similarity of the proper motions in the northeast and southeast is peculiar, given the different densities and X-ray emission properties of the regions. The northeastern region has lower densities and the X-ray emission is synchrotron dominated, suggesting that the shock velocities should be higher than in the southeastern, thermal X-ray dominated, region. A possible solution is that the H-alpha emitting filaments are biased toward denser regions, with lower shock velocities. Alternatively, in the northeast the shock velocity may have decreased rapidly during the past 200yr, and the X-ray synchrotron emission is an afterglow from a period when the shock velocity was higher.Comment: Accepted for publication in MNRA

    Testing the standard fireball model of GRBs using late X-ray afterglows measured by Swift

    Get PDF
    We show that all X-ray decay curves of GRBs measured by Swift can be fitted using one or two components both of which have exactly the same functional form comprised of an early falling exponential phase followed by a power law decay. The 1st component contains the prompt gamma-ray emission and the initial X-ray decay. The 2nd component appears later, has a much longer duration and is present for ~80% of GRBs. It most likely arises from the external shock which eventually develops into the X-ray afterglow. In the remaining ~20% of GRBs the initial X-ray decay of the 1st component fades more slowly than the 2nd and dominates at late times to form an afterglow but it is not clear what the origin of this emission is. The temporal decay parameters and gamma/X-ray spectral indices derived for 107 GRBs are compared to the expectations of the standard fireball model including a search for possible "jet breaks". For ~50% of GRBs the observed afterglow is in accord with the model but for the rest the temporal and spectral indices do not conform to the expected closure relations and are suggestive of continued, late, energy injection. We identify a few possible jet breaks but there are many examples where such breaks are predicted but are absent. The time, T_a, at which the exponential phase of the 2nd component changes to a final powerlaw decay afterglow is correlated with the peak of the gamma-ray spectrum, E_peak. This is analogous to the Ghirlanda relation, indicating that this time is in some way related to optically observed break times measured for pre-Swift bursts.Comment: submitted to Ap

    Contributions of After School Programs to the Development of Fundamental Movement Skills in Children

    Get PDF
    International Journal of Exercise Science 7(3) : 236-249, 2014. Fundamental movement skill (FMS) proficiency or the ability to perform basic skills (e.g., throwing, catching and jumping) has been linked to participation in lifelong physical activity. FMS proficiency amongst children has declined in the previous 15 years, with more children performing FMS at a low-mastery level. These declines may help explain the insufficient levels of participation in health promoting physical activity seen in today’s youth. The after school time period (e.g., 3 to 6 p.m.), is increasingly considered an opportune time for physical activity interventions. To date, little research has examined the potential for after school programming to improve FMS proficiency. Participants (n=40, 6-10 years) of two existent physical activity based after school programs, a low-organized games and a sports-based program, were pre- and post-tested for FMS proficiency using the Test of Gross Motor Development-2 (TGMD-2) over an 11-week period. The sports-based program participants showed no improvement in FMS over the 11-week study (p=0.91, eta2=0.00) and the games-based program participants significantly improved their proficiency (p=0.00, eta2=0.30). No significant (p=0.13, eta2 = 0.06), differences were found in change in FMS scores between the low-organized games program participants and the sport-based program participants. These results suggest that after school programs with a low-organized games-based focus may support a moderate improvement in FMS proficiency in young children. Better training of after school program leaders on how to teach FMS may be necessary to assist children in acquiring sufficient proficiency in FMS
    • …
    corecore