7,446 research outputs found

    Mixing and reaction studies of hydrazine and nitrogen tetroxide using photographic and spectral techniques

    Get PDF
    Mixing and reaction studies of hydrazine and nitrogen tetroxide using photographic and spectral technique

    Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?

    Full text link
    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (F{\sc{ornax}}) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M⊙_{\odot} progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more "explodable." In fact, for our 25-M⊙_{\odot} progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.Comment: Updated and revised text; 13 pages; 13 figures; Accepted to Ap.

    Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data

    Full text link
    We present theoretical atmosphere, spectral, and light-curve models for extrasolar giant planets (EGPs) undergoing strong irradiation for which {\it Spitzer} planet/star contrast ratios or light curves have been published (circa June 2007). These include HD 209458b, HD 189733b, TrES-1, HD 149026b, HD 179949b, and υ\upsilon And b. By comparing models with data, we find that a number of EGP atmospheres experience thermal inversions and have stratospheres. This is particularly true for HD 209458b, HD 149026b, and υ\upsilon And b. This finding translates into qualitative changes in the planet/star contrast ratios at secondary eclipse and in close-in EGP orbital light curves. Moreover, the presence of atmospheric water in abundance is fully consistent with all the {\it Spitzer} data for the measured planets. For planets with stratospheres, water absorption features invert into emission features and mid-infrared fluxes can be enhanced by a factor of two. In addition, the character of near-infrared planetary spectra can be radically altered. We derive a correlation between the importance of such stratospheres and the stellar flux on the planet, suggesting that close-in EGPs bifurcate into two groups: those with and without stratospheres. From the finding that TrES-1 shows no signs of a stratosphere, while HD 209458b does, we estimate the magnitude of this stellar flux breakpoint. We find that the heat redistribution parameter, Pn_n, for the family of close-in EGPs assumes values from ∼\sim0.1 to ∼\sim0.4. This paper provides a broad theoretical context for the future direct characterization of EGPs in tight orbits around their illuminating stars.Comment: Accepted to Ap. J., provided here in emulateapj format: 28 pages, 8 figures, many with multiple panel

    Fornax: a Flexible Code for Multiphysics Astrophysical Simulations

    Full text link
    This paper describes the design and implementation of our new multi-group, multi-dimensional radiation hydrodynamics (RHD) code Fornax and provides a suite of code tests to validate its application in a wide range of physical regimes. Instead of focusing exclusively on tests of neutrino radiation hydrodynamics relevant to the core-collapse supernova problem for which Fornax is primarily intended, we present here classical and rigorous demonstrations of code performance relevant to a broad range of multi-dimensional hydrodynamic and multi-group radiation hydrodynamic problems. Our code solves the comoving-frame radiation moment equations using the M1 closure, utilizes conservative high-order reconstruction, employs semi-explicit matter and radiation transport via a high-order time stepping scheme, and is suitable for application to a wide range of astrophysical problems. To this end, we first describe the philosophy, algorithms, and methodologies of Fornax and then perform numerous stringent code tests, that collectively and vigorously exercise the code, demonstrate the excellent numerical fidelity with which it captures the many physical effects of radiation hydrodynamics, and show excellent strong scaling well above 100k MPI tasks.Comment: Accepted to the Astrophysical Journal Supplement Series; A few more textual and reference updates; As before, one additional code test include

    Electron-Capture and Low-Mass Iron-Core-Collapse Supernovae: New Neutrino-Radiation-Hydrodynamics Simulations

    Full text link
    We present new 1D (spherical) and 2D (axisymmetric) simulations of electron-capture (EC) and low-mass iron-core-collapse supernovae (SN). We consider six progenitor models: the ECSN progenitor from Nomoto (1984, 1987); two ECSN-like low-mass low-metallicity iron core progenitors from Heger (private communication); and the 9-, 10-, and 11-M⊙M_\odot (zero-age main sequence) progenitors from Sukhbold et al. (2016). We confirm that the ECSN and ESCN-like progenitors explode easily even in 1D with explosion energies of up to a 0.15 Bethes (1B≡1051 erg1 {\rm B} \equiv 10^{51}\ {\rm erg}), and are a viable mechanism for the production of very low-mass neutron stars. However, the 9-, 10-, and 11-M⊙M_\odot progenitors do not explode in 1D and are not even necessarily easier to explode than higher-mass progenitor stars in 2D. We study the effect of perturbations and of changes to the microphysics and we find that relatively small changes can result in qualitatively different outcomes, even in 1D, for models sufficiently close to the explosion threshold. Finally, we revisit the impact of convection below the protoneutron star (PNS) surface. We analyze, 1D and 2D evolutions of PNSs subject to the same boundary conditions. We find that the impact of PNS convection has been underestimated in previous studies and could result in an increase of the neutrino luminosity by up to factors of two.Comment: 18 pages, 17 figures, 3 tables. Major revisions following a fix in the code input physics. Accepted on Ap

    A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets

    Full text link
    We show that under certain circumstances the differences between the absorption mean and Planck mean opacities can lead to multiple solutions for an LTE atmospheric structure. Since the absorption and Planck mean opacities are not expected to differ significantly in the usual case of radiative equilibrium, non-irradiated atmospheres, the most interesting situations where the effect may play a role are strongly irradiated stars and planets, and also possibly structures where there is a significant deposition of mechanical energy, such as stellar chromospheres and accretion disks. We have presented an illustrative example of a strongly irradiated giant planet where the bifurcation effect is predicted to occur for a certain range of distances from the star.Comment: 22 pages, 6 figures, submitted to Ap

    Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres

    Full text link
    We calculate detailed chemical abundance profiles for a variety of brown dwarf and extrasolar giant planet atmosphere models, focusing in particular on Gliese 229B, and derive the systematics of the changes in the dominant reservoirs of the major elements with altitude and temperature. We assume an Anders and Grevesse (1989) solar composition of 27 chemical elements and track 330 gas--phase species, including the monatomic forms of the elements, as well as about 120 condensates. We address the issue of the formation and composition of clouds in the cool atmospheres of substellar objects and explore the rain out and depletion of refractories. We conclude that the opacity of clouds of low--temperature (≤\le900 K), small--radius condensibles (specific chlorides and sulfides), may be responsible for the steep spectrum of Gliese 229B observed in the near infrared below 1 \mic. Furthermore, we assemble a temperature sequence of chemical transitions in substellar atmospheres that may be used to anchor and define a sequence of spectral types for substellar objects with Teff_{eff}s from ∼\sim2200 K to ∼\sim100 K.Comment: 57 pages total, LaTeX, 14 figures, 5 tables, also available in uuencoded, gzipped, and tarred form via anonymous ftp at www.astrophysics.arizona.edu (cd to pub/burrows/chem), submitted to Ap.

    Spectroscopic Constants, Abundances, and Opacities of the TiH Molecule

    Full text link
    Using previous measurements and quantum chemical calculations to derive the molecular properties of the TiH molecule, we obtain new values for its ro-vibrational constants, thermochemical data, spectral line lists, line strengths, and absorption opacities. Furthermore, we calculate the abundance of TiH in M and L dwarf atmospheres and conclude that it is much higher than previously thought. We find that the TiH/TiO ratio increases strongly with decreasing metallicity, and at high temperatures can exceed unity. We suggest that, particularly for subdwarf L and M dwarfs, spectral features of TiH near ∼\sim0.52 \mic, 0.94 \mic, and in the HH band may be more easily measureable than heretofore thought. The recent possible identification in the L subdwarf 2MASS J0532 of the 0.94 \mic feature of TiH is in keeping with this expectation. We speculate that looking for TiH in other dwarfs and subdwarfs will shed light on the distinctive titanium chemistry of the atmospheres of substellar-mass objects and the dimmest stars.Comment: 37 pages, including 4 figures and 13 tables, accepted to the Astrophysical Journa

    Relative entropy via non-sequential recursive pair substitutions

    Full text link
    The entropy of an ergodic source is the limit of properly rescaled 1-block entropies of sources obtained applying successive non-sequential recursive pairs substitutions (see P. Grassberger 2002 ArXiv:physics/0207023 and D. Benedetto, E. Caglioti and D. Gabrielli 2006 Jour. Stat. Mech. Theo. Exp. 09 doi:10.1088/1742.-5468/2006/09/P09011). In this paper we prove that the cross entropy and the Kullback-Leibler divergence can be obtained in a similar way.Comment: 13 pages , 2 figure

    Line Intensities and Molecular Opacities of the FeH F4Δi−X4ΔiF^4\Delta_i-X^4\Delta_i Transition

    Full text link
    We calculate new line lists and opacities for the F4Δi−X4ΔiF^4\Delta_i-X^4\Delta_i transition of FeH. The 0-0 band of this transition is responsible for the Wing-Ford band seen in M-type stars, sunspots and brown dwarfs. The new Einstein A values for each line are based on a high level ab initio calculation of the electronic transition dipole moment. The necessary rotational line strength factors (H\"onl-London factors) are derived for both the Hund's case (a) and (b) coupling limits. A new set of spectroscopic constants were derived from the existing FeH term values for v=0, 1 and 2 levels of the XX and FF states. Using these constants extrapolated term values were generated for v=3 and 4 and for JJ values up to 50.5. The line lists (including Einstein A values) for the 25 vibrational bands with v≤\leq4 were generated using a merged list of experimental and extrapolated term values. The FeH line lists were use to compute the molecular opacities for a range of temperatures and pressures encountered in L and M dwarf atmospheres. Good agreement was found between the computed and observed spectral energy distribution of the L5 dwarf 2MASS-1507.Comment: 52 pages, 3 figures, many tables, accepted for publication in the Astrophysical Journal Supplement
    • …
    corecore