4,932 research outputs found
GRB Energetics in the Swift Era
We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known
redshift that were detected by the Swift spacecraft and monitored by the
satellite's X-ray Telescope (XRT). Using the bolometric fluence values
estimated in Butler et al. 2007b and the last XRT observation for each event,
we set a lower limit the their collimation corrected energy Eg and find that a
68% of our sample are at high enough redshift and/or low enough fluence to
accommodate a jet break occurring beyond the last XRT observation and still be
consistent with the pre-Swift Eg distribution for long GRBs. We find that
relatively few of the X-ray light curves for the remaining events show evidence
for late-time decay slopes that are consistent with that expected from post jet
break emission. The breaks in the X-ray light curves that do exist tend to be
shallower and occur earlier than the breaks previously observed in optical
light curves, yielding a Eg distribution that is far lower than the pre-Swift
distribution. If these early X-ray breaks are not due to jet effects, then a
small but significant fraction of our sample have lower limits to their
collimation corrected energy that place them well above the pre-Swift Eg
distribution. Either scenario would necessitate a much wider post-Swift Eg
distribution for long cosmological GRBs compared to the narrow standard energy
deduced from pre-Swift observations. We note that almost all of the pre-Swift
Eg estimates come from jet breaks detected in the optical whereas our sample is
limited entirely to X-ray wavelengths, furthering the suggestion that the
assumed achromaticity of jet breaks may not extend to high energies.Comment: 30 pages, 10 figures, Accepted to Ap
Bright X-ray Flares in Gamma-Ray Burst Afterglows
Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended
Analysis of the X-ray Emission of Nine Swift Afterglows
The X-ray light-curves of 9 Swift XRT afterglows (050126, 050128, 050219A,
050315, 050318, 050319, 050401, 050408, 050505) display a complex behaviour: a
steep t^{-3.0 \pm 0.3} decay until ~400 s, followed by a significantly slower
t^{-0.65+/-0.20} fall-off, which at 0.2--2 d after the burst evolves into a
t^{-1.7+/-0.5} decay. We consider three possible models for the geometry of
relativistic blast-waves (spherical outflows, non-spreading jets, and spreading
jets), two possible dynamical regimes for the forward shock (adiabatic and
fully radiative), and we take into account a possible angular structure of the
outflow and delayed energy injection in the blast-wave, to identify the models
which reconcile the X-ray light-curve decay with the slope of the X-ray
continuum for each of the above three afterglow phases. By piecing together the
various models for each phase in a way that makes physical sense, we identify
possible models for the entire X-ray afterglow. The major conclusion of this
work is that a long-lived episode of energy injection in the blast-wave, during
which the shock energy increases at t^{1.0+/-0.5}, is required for five
afterglows and could be at work in the other four as well. Optical observations
in conjunction with the X-ray can distinguish among these various models. Our
simple tests allow the determination of the location of the cooling frequency
relative to the X-ray domain and, thus, of the index of the electron power-law
distribution with energy in the blast-wave. The resulting indices are clearly
inconsistent with an universal value.Comment: 10 pages, minor changes, to be published in the MNRA
Spatial distribution and broad-band spectral characteristics of the diffuse X-ray background, 0.1 - 1.0 keV
Preliminary maps covering more than 85 percent of the sky are presented for three energy bands: the B band, the C band, and the M band. The study was undertaken to find evidence that most of the diffuse X-ray background at energies less than 1 keV is local to the galaxy and that it is most probably due to thermal radiation from a low density plasma which fills a substantial fraction of interstellar space. A preliminary analysis of the data is provided including a report that most of the B and C band flux has a common origin, probably in a 10 to the 6th power K region surrounding the Sun, and that most of the M band flux does not originate from the same material
Limits on soft X-ray flux from distant emission regions
The all-sky soft X-ray data of McCammon et al. and the new N sub H survey (Stark et al. was used to place limits on the amount of the soft X-ray diffuse background that can originate beyond the neutral gas of the galactic disk. The X-ray data for two regions of the sky near the galactic poles are shown to be uncorrelated with 21 cm column densities. Most of the observed x-ray flux must therefore originate on the near side of the most distant neutral gas. The results from these regions are consistent with X-ray emission from a locally isotropic, unabsorbed source, but require large variations in the emission of the local region over large angular scales
The soft X-ray diffuse background
Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source
Recommended from our members
Evolutionarily stable sexual allocation by both stressed and unstressed potentially simultaneous hermaphrodites within the same population.
Factors influencing allocation of resources to male and female offspring continue to be of great interest to evolutionary biologists. A simultaneous hermaphrodite is capable of functioning in both male and female mode at the same time, and such a life-history strategy is adopted by most flowering plants and by many sessile aquatic animals. In this paper, we focus on hermaphrodites that nourish post-zygotic stages, e.g. flowering plants and internally fertilising invertebrates, and consider how their sex allocation should respond to an environmental stress that reduces prospects of survival but does not affect all individuals equally, rather acting only on a subset of the population. Whereas dissemination of pollen and sperm can begin at sexual maturation, release of seeds and larvae is delayed by embryonic development. We find that the evolutionarily stable strategy for allocation between male and female functions will be critically dependent on the effect of stress on the trade-off between the costs of male and female reproduction, (i.e. of sperm and embryos). Thus, we identify evaluation of this factor as an important challenge to empiricists interested in the effects of stress on sex allocation. When only a small fraction of the population is stressed, we predict that stressed individuals will allocate their resources entirely to male function and unstressed individuals will increase their allocation to female function. Conversely, when the fraction of stress-affected individuals is high, stressed individuals should respond to this stressor by increasing investment in sperm and unstressed individuals should invest solely in embryos. A further prediction of the model is that we would not expect to find populations in the natural world where both stressed and unstressed individuals are both hermaphrodite
Testing the standard fireball model of GRBs using late X-ray afterglows measured by Swift
We show that all X-ray decay curves of GRBs measured by Swift can be fitted
using one or two components both of which have exactly the same functional form
comprised of an early falling exponential phase followed by a power law decay.
The 1st component contains the prompt gamma-ray emission and the initial X-ray
decay. The 2nd component appears later, has a much longer duration and is
present for ~80% of GRBs. It most likely arises from the external shock which
eventually develops into the X-ray afterglow. In the remaining ~20% of GRBs the
initial X-ray decay of the 1st component fades more slowly than the 2nd and
dominates at late times to form an afterglow but it is not clear what the
origin of this emission is.
The temporal decay parameters and gamma/X-ray spectral indices derived for
107 GRBs are compared to the expectations of the standard fireball model
including a search for possible "jet breaks". For ~50% of GRBs the observed
afterglow is in accord with the model but for the rest the temporal and
spectral indices do not conform to the expected closure relations and are
suggestive of continued, late, energy injection. We identify a few possible jet
breaks but there are many examples where such breaks are predicted but are
absent.
The time, T_a, at which the exponential phase of the 2nd component changes to
a final powerlaw decay afterglow is correlated with the peak of the gamma-ray
spectrum, E_peak. This is analogous to the Ghirlanda relation, indicating that
this time is in some way related to optically observed break times measured for
pre-Swift bursts.Comment: submitted to Ap
- …