7,722 research outputs found

    Theory for the Secondary Eclipse Fluxes, Spectra, Atmospheres, and Light Curves of Transiting Extrasolar Giant Planets

    Get PDF
    We have created a general methodology for calculating the wavelength-dependent light curves of close-in extrasolar giant planets (EGPs) as they traverse their orbits. Focussing on the transiting EGPs HD189733b, TrES-1, and HD209458b, we calculate planet/star flux ratios during secondary eclipse and compare them with the Spitzer data points obtained so far in the mid-infrared. We introduce a simple parametrization for the redistribution of heat to the planet's nightside, derive constraints on this parameter (P_n), and provide a general set of predictions for planet/star contrast ratios as a function of wavelength, model, and phase. Moreover, we calculate average dayside and nightside atmospheric temperature/pressure profiles for each transiting planet/P_n pair with which existing and anticipated Spitzer data can be used to probe the atmospheric thermal structure of severely irradiated EGPs. We find that the baseline models do a good job of fitting the current secondary eclipse dataset, but that the Spitzer error bars are not yet small enough to discriminate cleanly between all the various possibilities.Comment: 14 figures, 7 text pages (in two-column emulateapj format); Accepted to the Ap.J. June 26, 2006; one cosmetic change made to astro-ph version

    Studies of high latitude current systems using MAGSAT vector data

    Get PDF
    The magnetic disturbance fields caused by global external current systems are considered with particular emphasis on improving the understanding of the physical processes which control high latitude current systems. Following processing the MAGSAT data were routinely plotted in the Universal Time (UT) format as well as in a polar plot format. The H'D'U' coordinate system, was adopted as the standard for representing the MAGSAT residual magnetic field vectors. A data file was generated and the TPOLAR computer code was developed to determine from the orbital elements, the time, latitude, and MLT of the extremum latitude of each transpolar segment of orbit. The precision of the vector data set from MAGSAT prompted an extended exploratory phase for data analysis procedures, modeling techniques and phenomenology

    Studies of high latitude current systems using Magsat vector data

    Get PDF
    Disturbance fields caused by global external current systems are analyzed in order to gain an improved understanding of the phydical processes which control high latitude current systems and to increase the confidence level in the identification of internal field levels. The basic approach is to: (1) categorize the vector data by those physical parameters important for investigation of external current systems; (2) map the disturbances for appropriate conditions; (3) model the currents which might cause the mapped disturbances; and (4) correlate results with data from other sources. It is concluded that the Magsat data set appears to have remarkably high precision and quality and should permit major advances to be made in modeling current distribution at high latitudes in the ionosphere and magnetosphere

    Wildcat Currency

    Get PDF

    GRB Energetics in the Swift Era

    Full text link
    We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known redshift that were detected by the Swift spacecraft and monitored by the satellite's X-ray Telescope (XRT). Using the bolometric fluence values estimated in Butler et al. 2007b and the last XRT observation for each event, we set a lower limit the their collimation corrected energy Eg and find that a 68% of our sample are at high enough redshift and/or low enough fluence to accommodate a jet break occurring beyond the last XRT observation and still be consistent with the pre-Swift Eg distribution for long GRBs. We find that relatively few of the X-ray light curves for the remaining events show evidence for late-time decay slopes that are consistent with that expected from post jet break emission. The breaks in the X-ray light curves that do exist tend to be shallower and occur earlier than the breaks previously observed in optical light curves, yielding a Eg distribution that is far lower than the pre-Swift distribution. If these early X-ray breaks are not due to jet effects, then a small but significant fraction of our sample have lower limits to their collimation corrected energy that place them well above the pre-Swift Eg distribution. Either scenario would necessitate a much wider post-Swift Eg distribution for long cosmological GRBs compared to the narrow standard energy deduced from pre-Swift observations. We note that almost all of the pre-Swift Eg estimates come from jet breaks detected in the optical whereas our sample is limited entirely to X-ray wavelengths, furthering the suggestion that the assumed achromaticity of jet breaks may not extend to high energies.Comment: 30 pages, 10 figures, Accepted to Ap

    Analysis of the X-ray Emission of Nine Swift Afterglows

    Full text link
    The X-ray light-curves of 9 Swift XRT afterglows (050126, 050128, 050219A, 050315, 050318, 050319, 050401, 050408, 050505) display a complex behaviour: a steep t^{-3.0 \pm 0.3} decay until ~400 s, followed by a significantly slower t^{-0.65+/-0.20} fall-off, which at 0.2--2 d after the burst evolves into a t^{-1.7+/-0.5} decay. We consider three possible models for the geometry of relativistic blast-waves (spherical outflows, non-spreading jets, and spreading jets), two possible dynamical regimes for the forward shock (adiabatic and fully radiative), and we take into account a possible angular structure of the outflow and delayed energy injection in the blast-wave, to identify the models which reconcile the X-ray light-curve decay with the slope of the X-ray continuum for each of the above three afterglow phases. By piecing together the various models for each phase in a way that makes physical sense, we identify possible models for the entire X-ray afterglow. The major conclusion of this work is that a long-lived episode of energy injection in the blast-wave, during which the shock energy increases at t^{1.0+/-0.5}, is required for five afterglows and could be at work in the other four as well. Optical observations in conjunction with the X-ray can distinguish among these various models. Our simple tests allow the determination of the location of the cooling frequency relative to the X-ray domain and, thus, of the index of the electron power-law distribution with energy in the blast-wave. The resulting indices are clearly inconsistent with an universal value.Comment: 10 pages, minor changes, to be published in the MNRA

    Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands

    Get PDF
    We find that a theoretical fit to all the HD 209458b data at secondary eclipse requires that the dayside atmosphere of HD 209458b have a thermal inversion and a stratosphere. This inversion is caused by the capture of optical stellar flux by an absorber of uncertain origin that resides at altitude. One consequence of stratospheric heating and temperature inversion is the flipping of water absorption features into emission features from the near- to the mid-infrared and we see evidence of such a water emission feature in the recent HD 209458b IRAC data of Knutson et al. In addition, an upper-atmosphere optical absorber may help explain both the weaker-than-expected Na D feature seen in transit and the fact that the transit radius at 24 μ\mum is smaller than the corresponding radius in the optical. Moreover, it may be a factor in why HD 209458b's optical transit radius is as large as it is. We speculate on the nature of this absorber and the planets whose atmospheres may, or may not, be affected by its presence.Comment: Accepted to the Astrophysical Journal Letters on August 28, 2007, six pages in emulateapj forma

    Rumors of War

    Get PDF
    corecore