856 research outputs found

    Development and application of CatFACS: are human cat adopters influenced by cat facial expressions?

    Get PDF
    The domestic cat (Felis silvestris catus) is quickly becoming the most popular animal companion in the world. The evolutionary processes that occur during domestication are known to have wide effects on the morphology, behaviour, cognition and communicative abilities of a species. Since facial expression is central to human communication, it is possible that cat facial expression has been subjected to selection during domestication. Standardised measurement techniques to study cat facial expression are, however, currently lacking. Here, as a first step to enable cat facial expression to be studied in an anatomically based and objective way, CatFACS (Cat Facial Action Coding System) was developed. Fifteen individual facial movements (Action Units), six miscellaneous movements (Action Descriptors) and seven Ear Action Descriptors were identified in the domestic cat. CatFACS was then applied to investigate the impact of cat facial expression on human preferences in an adoption shelter setting. Rehoming speed from cat shelters was used as a proxy for human selective pressure. The behaviour of 106 cats ready for adoption in three different shelters was recorded during a standardised encounter with an experimenter. This experimental setup aimed to mimic the first encounter of a cat with a potential adopter, i.e. an unfamiliar human. Each video was coded for proximity to the experimenter, body movements, tail movements and face movements. Cat facial movements were not related to rehoming speed, suggesting that cat facial expression may not have undergone significant selection. In contrast, rubbing frequency was positively related to rehoming speed. The findings suggest that humans are more influenced by overt prosocial behaviours than subtle facial expression in domestic cats

    EquiFACS: the Equine Facial Action Coding System

    Get PDF
    Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high—and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices

    Appreciating interconnectivity between habitats is key to Blue Carbon management

    Get PDF
    We welcome the recent synthesis by Howard et al. (2017), which drew attention to the role of marine systems and natural carbon sequestration in the oceans as a fundamental aspect of climate-change mitigation. The importance of long-term carbon storage in marine habitats (ie “blue carbon”) is rapidly gaining recognition and is increasingly a focus of national and international attempts to mitigate rising atmospheric emissions of carbon dioxide. However, effectively managing blue carbon requires an appreciation of the inherent connectivity between marine populations and habitats. More so than their terrestrial counterparts, marine ecosystems are “open”, with high rates of transfer of energy, matter, genetic material, and species across regional seascapes (Kinlan and Gaines 2003). We suggest that policy frameworks, and the science underpinning them, should focus not only on carbon sink habitats but also on carbon source habitats, which play critical roles in marine carbon cycling and natural carbon sequestration in the oceans

    Evolution of facial muscle anatomy in dogs

    Get PDF
    Domestication shaped wolves into dogs and transformed both their behavior and their anatomy. Here we show that, in only 33,000 y, domestication transformed the facial muscle anatomy of dogs specifically for facial communication with humans. Based on dissections of dog and wolf heads, we show that the levator anguli oculi medialis, a muscle responsible for raising the inner eyebrow intensely, is uniformly present in dogs but not in wolves. Behavioral data, collected from dogs and wolves, show that dogs produce the eyebrow movement significantly more often and with higher intensity than wolves do, with highest-intensity movements produced exclusively by dogs. Interestingly, this movement increases paedomorphism and resembles an expression that humans produce when sad, so its production in dogs may trigger a nurturing response in humans. We hypothesize that dogs with expressive eyebrows had a selection advantage and that "puppy dog eyes" are the result of selection based on humans' preferences

    OrangFACS: a muscle-based facial movement coding system for orangutans (Pongo spp.)

    Get PDF
    Comparing homologous expressions between species can shed light on the phylogenetic and functional changes that have taken place during evolution. To assess homology across species we must approach primate facial expressions in an anatomical, systematic, and standardized way. The Facial Action Coding System (FACS), a widely used muscle-based tool for analyzing human facial expressions, has recently been adapted for chimpanzees (Pan troglodytes: ChimpFACS), rhesus macaques (Macaca mulatta: MaqFACS), and gibbons (GibbonFACS). Here, we present OrangFACS, a FACS adapted for orangutans (Pongo spp.). Orangutans are the most arboreal and the least social great ape, so their visual communication has been assumed to be less important than vocal communication and is little studied. We scrutinized the facial anatomy of orangutans and coded videos of spontaneous orangutan behavior to identify independent movements: Action Units (AUs) and Action Descriptors (ADs). We then compared these facial movements with movements of homologous muscles in humans, chimpanzees, macaques, and gibbons. We also noted differences related to sexual dimorphism and developmental stages in orangutan facial morphology. Our results show 17 AUs and 7 ADs in orangutans, indicating an overall facial mobility similar to that found in chimpanzees, macaques, and gibbons but smaller than that found in humans. This facial movement capacity in orangutans may be the result of several, nonmutually exclusive explanations, including the need for facial communication in specialized contexts, phylogenetic inertia, and allometric effects

    Relativistic ejecta from XRF 060218 and the rate of cosmic explosions

    Get PDF
    Over the last decade, long-duration gamma-ray bursts (GRBs) including the subclass of X-ray flashes (XRFs) have been revealed to be a rare variety of Type Ibc supernova (SN). While all these events result from the death of massive stars, the electromagnetic luminosities of GRBs and XRFs exceed those of ordinary Type Ibc SNe by many orders of magnitude. The essential physical process that causes a dying star to produce a GRB or XRF, and not just an SN, remains the crucial open question. Here we present radio and X-ray observations of XRF 060218 (associated with SN 2006aj), the second nearest GRB identified to-date, which allow us to measure its total energy and place it in the larger context of cosmic explosions. We show that this event is 100 times less energetic but ten times more common than cosmological GRBs. Moreover, it is distinguished from ordinary Type Ibc SNe by the presence of 10^48 erg coupled to mildly-relativistic ejecta, along with a central engine (an accretion-fed, rapidly rotating compact source) which produces X-rays for weeks after the explosion. This suggests that the production of relativistic ejecta is the key physical distinction between GRBs/XRFs and ordinary SNe, while the nature of the central engine (black hole or magnetar) may distinguish typical bursts from low-luminosity, spherical events like XRF 060218.Comment: To appear in Nature on August 31 2006 (15 pages, 3 figures, 1 table, including Supplementary Information

    An Anti-Glitch in a Magnetar

    Get PDF
    Magnetars are neutron stars showing dramatic X-ray and soft γ\gamma-ray outbursting behaviour that is thought to be powered by intense internal magnetic fields. Like conventional young neutron stars in the form of radio pulsars, magnetars exhibit "glitches" during which angular momentum is believed to be transferred between the solid outer crust and the superfluid component of the inner crust. Hitherto, the several hundred observed glitches in radio pulsars and magnetars have involved a sudden spin-up of the star, due presumably to the interior superfluid rotating faster than the crust. Here we report on X-ray timing observations of the magnetar 1E 2259+586 which we show exhibited a clear "anti-glitch" -- a sudden spin down. We show that this event, like some previous magnetar spin-up glitches, was accompanied by multiple X-ray radiative changes and a significant spin-down rate change. This event, if of origin internal to the star, is unpredicted in models of neutron star spin-down and is suggestive of differential rotation in the neutron star, further supporting the need for a rethinking of glitch theory for all neutron stars

    The web-based ASSO-food frequency questionnaire for adolescents: relative and absolute reproducibility assessment

    Get PDF
    Background: A new food frequency questionnaire (FFQ) has been recently developed within the Italian Adolescents and Surveillance System for the Obesity prevention (ASSO) Project; it was found to be appropriate for ranking adolescents in food and nutrient levels of intake. The aim of this study was to assess the relative and absolute reproducibility of the ASSO-FFQ for 24 food groups, energy and 52 nutrients. Methods: A test-retest study was performed on two ASSO-FFQs administered one month apart of each other to 185 adolescents, aged 14–17 and attending secondary schools in Palermo (Italy). Wilcoxon test assessed differences in median daily intakes between the two FFQs. Agreement was evaluated by quintiles comparison and weighted kappa. Intraclass Correlation Coefficients (ICC) and Bland-Altman method assessed the relative and absolute reliability respectively. Results: Significant difference (p < 0.05) in median intakes was found only for bread substitutes, savoury food, water, soft drinks, carbohydrates and sugar. The subjects classified into the same or adjacent quintiles for food groups ranged from 62% (white bread) to 91% (soft drinks); for energy and nutrients from 64% (polyunsaturated fatty acids) to 90% (ethanol). Mean values of weighted kappa were 0.47 and 0.48, respectively for food groups and nutrients. Fair to good ICC values (>0.40) were assessed for thirteen food groups, energy and forty-three nutrients. Limits of Agreement were narrow for almost all food groups and all nutrients. Conclusions: The ASSO-FFQ is a reliable instrument for estimating food groups, energy and nutrients intake in adolescents

    Energy cost and return for hunting in African wild dogs and Cheetahs

    Get PDF
    African wild dogs (Lycaon pictus) are reported to hunt with energetically costly long chase distances. We used high-resolution GPS and inertial technology to record 1,119 high-speed chases of all members of a pack of six adult African wild dogs in northern Botswana. Dogs performed multiple short, high-speed, mostly unsuccessful chases to capture prey, while cheetahs (Acinonyx jubatus) undertook even shorter, higher-speed hunts. We used an energy balance model to show that the energy return from group hunting and feeding substantially outweighs the cost of multiple short chases, which indicates that African wild dogs are more energetically robust than previously believed. Comparison with cheetah illustrates the trade-off between sheer athleticism and high individual kill rate characteristic of cheetahs, and the energetic robustness of frequent opportunistic group hunting and feeding by African wild dogs
    corecore