5 research outputs found

    Genetic structure of European sheep breeds

    No full text
    Large-scale evaluations of genetic diversity in domestic livestock populations are necessary so that region-specific conservation measures can be implemented. We performed the first such survey in European sheep by analysing 820 individuals from 29 geographically and phenotypically diverse breeds and a closely related wild species at 23 microsatellite loci. In contrast to most other domestic species, we found evidence of widespread heterozygote deficit within breeds, even after removing loci with potentially high frequency of null alleles. This is most likely due to subdivision among flocks (Wahlund effect) and use of a small number of rams for breeding. Levels of heterozygosity were slightly higher in southern than in northern breeds, consistent with declining diversity with distance from the Near Eastern centre of domestication. Our results highlight the importance of isolation in terms of both geography and management in augmenting genetic differentiation through genetic drift, with isolated northern European breeds showing the greatest divergence and hence being obvious targets for conservation. Finally, using a Bayesian cluster analysis, we uncovered evidence of admixture between breeds, which has important implications for breed management

    Organolead Compounds

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore