15 research outputs found

    Two different acid oxidation syntheses to open C60 fullerene for heavy metal detection

    Get PDF
    Graphene oxide quantum dots (GOQDs) can be synthesized through a large variety of synthesis methods starting from different carbon allotropes such as nanotubes, graphite, C60 and exploiting various synthesis and reactions. These different approaches have great influence on the properties of the obtained materials, and, consequently, on the potential applications. In this work, Buckminster C60 fullerene has been used to prepare unfolded fullerene nanoparticles (UFNPs) via two distinct synthesis methods namely: Hummer and H2 SO4 + HNO3 solution. The different characteristics of the final materials and the different response in the presence of heavy metal ions have been investigated in view of sensing applications of water contamination

    Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): New stratigraphic constraints

    Get PDF
    In this paper we investigate the stratigraphic relationship between the emplacement of the CAMP basalts and the Triassic–Jurassic (Tr–J) boundary in the Fundy Basin (Nova Scotia, Canada). This is one of the best exposed of the synrift basins of eastern North America (ENA) formed as a consequence of the rifting that led to the formation of the Atlantic Ocean. The Triassic palynological assemblages found in the sedimentary rocks below (uppermost Blomidon Formation) and just above the North Mountain Basalt (Scots Bay Member of the McCoy Brook Formation) indicate that CAMP volcanism, at least in Nova Scotia, is entirely of Triassic age, occurred in a very short time span, and may have triggered the T–J boundary biotic and environmental crisis. The palynological assemblage from the Blomidon Formation is characterised by the dominance of the Circumpolles group (e.g. Gliscopollis meyeriana, Corollina murphyae, Classopollis torosus) which crosses the previously established Tr–J boundary.The Triassic species Patinasporites densus disappears several centimetres below the base of the North Mountain basalt, near the previously interpreted Tr–J boundary. The lower strata of the Scots Bay Member yielded a palynological assemblage dominated by Triassic bisaccate pollens (e.g Lunatisporites acutus, L. rhaeticus Lueckisporites sp., Alisporites parvus) with minor specimens of the Circumpolles group. Examination of the state of preservation and thermal alteration of organic matter associated with the microfloral assemblages precludes the possibility of recycling of the Triassic sporomorphs from the older strata. Our data argue against the previous definition of the Tr–J boundary in the ENA basins, which was based mainly on the last occurrence of P. densus. Consequently, it follows that the late Triassic magnetostratigraphic correlations should be revised considering that chron E23r, which is correlated with the last occurrence of P. densus in the Newark basin, does not occur at the Tr–J boundary but marks rather a late Triassic (probably Rhaetian) reversal

    X-ray and UV photoelectron spectroscopy of Ag nanoclusters

    No full text
    The main purpose of the present work is to analyze a series of Ag nanoparticles (NPs) with different size or ligand functionalization by using X-ray photoelectron spectroscopy (XPS) and to identify the differences in the band-shape and energy peak position of photoemission spectra due to the particle dimension. A transmission electron microscopy characterization was performed, to verify the consistency of the results. Three types of samples were prepared starting from AgNO3 water solution and adding different capping agents. In the first two cases, the formation of NPs was promoted by the reduction of silver ions Ag+1 to metallic Ag-0 through the addition of sodium borohydride, whereas in the last case, it was triggered by the exposure to UV light. Depending on the size of the NPs, a different physical behavior can be recognized. NPs with diameter of about 5 nm are characterized by the phenomenon of localized surface plasmon resonance (LSPR). The other type of samples having a diameter of about 1.5 nm presents discrete energy levels instead of electronic bands, and in this case, a typical fluorescence phenomenon can be observed. In the latter case, we can refer to such systems as nanoclusters. The XPS analyses were focused on the Ag 3D spectra looking for the possible shifts of the Ag doublet as a function of the particles size. The ultraviolet photoelectron spectroscopy with He II source was used for the investigation of possible changes in the valence band

    Synthesis of fluorescent silver nanoclusters with potential application for heavy metal ions detection in water

    No full text
    Metal nanoclusters (MNCs) are small aggregates of metal atoms with a mean diameter up to 2 nm, that when excited by electromagnetic radiation of suitable energy present an intense florescence. This optical property can be exploited in many fields such as bioimaging, drug delivery and optical sensing in environmental monitoring. In the present work, we synthesized silver nanoclusters (AgNCs) in water starting from AgNO3 and exploiting poly (methacrylic acid) (PMAA) as capping agent. The reduction of the silver ions Ag(I) to Ag(0) was promoted by the exposition of the solution to UV light radiation for 6 minutes. We studied the UV-Vis absorption and the fluorescence spectra for different pH values. The morphological characterization of the solution was accomplished by Transmission Electron Microscopy (TEM) and the statistical analysis showed that the mean diameter of the AgNCs was around 2 nm for the solution at pH = 4 which presented also the strongest fluorescence. Moreover, we studied the time stability of the absorption and fluorescence spectra. AgNCs stored in the dark at 4 °C were stable for more than 60 days. A possible application of the synthesized AgNCs deals with water monitoring by optical sensing based on the change of the fluorescence property in presence of heavy metal ions. Preliminary investigations show a high sensitivity to Pb(II) ions. © 2019 American Institute of Physics Inc.. All rights reserved

    Synthesis of fluorescent ag nanoclusters for sensing and imaging applications

    No full text
    Metal nanoparticles have attracted more and more attention in the last years due to their unique chemical and physical properties which are very different from the metal bulk material. In particular, when the size of nanoparticles decreases below two nm, nanoparticles can be described as nanoclusters (NCs), and they present peculiar optical properties. The excited electrons in addition to specific absorption bands show also a bright luminescence related to the quantum size effect which produce discrete energy levels. Optical properties (absorption and fluorescence) of these NCs are widely used in many different applications in science and engineering, such as chemical sensors, fluorescent probes for bio imaging or in environmental issues. In the present study, we report on the synthesis of silver nanoclusters (AgNCs) in aqueous phase using silver nitrate as precursor salt and L-Glutathione (GSH) as stabilizer. AgNCs were characterized using absorption and fluorescence spectroscopy, and transmission electron microscopy (TEM). The strong absorption and luminescence shown by these NCs are very promising for a possible exploitation both as label for bioimaging and for optical sensors for heavy metal ion

    Fluorescence enhancement induced by the interaction of silver nanoclusters with lead ions in water

    No full text
    We have synthesized fluorescent and stable silver nanoclusters (AgNCs) capped with poly (methacrylic acid), PMAA, by UV irradiation process. The NCs are well dispersed in aqueous solution and present a uniform distribution with an average dimension of 1.45 +/- 0.26 nm. The fluorescence excited at 340 nm was found to be sensitive to the presence of heavy metal ions in solution. In particular, a peculiar fluorescence enhancement was detected upon interaction with lead(II) ions. A linear behavior of the fluorescence intensity as a function of the Pb2+ concentration was measured and a detection limit of 60 nM was estimated. A possible mechanism of the interaction between AgNCs and metal ions is discussed

    Plasmonic sensor based on interaction between silver nanoparticles and Ni2+or Co2+in water

    Get PDF
    Silver nanoparticles capped with 3-mercapto-1propanesulfonic acid sodium salt (AgNPs-3MPS), able to interact with Ni2+ or Co2+, have been prepared to detect these heavy metal ions in water. This system works as an optical sensor and it is based on the change of the intensity and shape of optical absorption peak due to the surface plasmon resonance (SPR) when the AgNPs-3MPS are in presence of metals ions in a water solution. We obtain a specific sensitivity to Ni2+ and Co2+ up to 500 ppb (part per billion). For a concentration of 1 ppm (part per million), the change in the optical absorption is strong enough to produce a colorimetric effect on the solution, easily visible with the naked eye. In addition to the UV-VIS characterizations, morphological and dimensional studies were carried out by transmission electron microscopy (TEM). Moreover, the systems were investigated by means of dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and high-resolution X-ray photoelectron spectroscopy (HR-XPS). On the basis of the results, the mechanism responsible for the AgNPs-3MPS interaction with Ni2+ and Co2+ (in the range of 0.5⁻2.0 ppm) looks like based on the coordination compounds formation
    corecore