246 research outputs found

    Erosion as a driving mechanism of intracontinental mountain growth

    Get PDF
    In nature, mountains can grow and remain as localized tectonic features over long periods of time (> 10 m.y.). By contrast, according to current knowledge of lithospheric rheology and neglecting surface processes, any intracontinental range with a width that exceeds that which can be supported by the strength of the lithosphere should collapse within a few tens of millions of years. For example, assuming a quartz-dominated crustal rheology, the relief of a range initially 3 km high and 300–400 km wide is reduced by half in about 15 m.y. as a result of lateral spreading of its crustal root. We suggest that surface processes might actually prevent such a “subsurface collapse.” Removal of material from topographic heights and deposition in the foreland oppose spreading of the crustal root and could eventually drive a net influx of material toward the orogeny. We performed a set of numerical experiments in order to validate this hypothesis. A section of a lithosphere, with a brittle-elasto-ductile rheology, initially loaded by a mountain range is submitted to horizontal shortening and to surface processes. If erosion is intense, material is removed more rapidly than it can be supplied by crustal thickening below the range, and the topography is rapidly smoothed. For example, a feature 3 km high and 300–400 km wide is halved in height in about 15 m.y. for an erosion coefficient k = 10^3 m^2/yr (the erosion rate is of the order of a few 0.1 mm/yr). This regime might be called “erosional collapse.” If erosion is not active enough, the crustal root spreads out laterally and “subsurface collapse” occurs. In the third intermediate regime, removal of the material by erosion is dynamically compensated by isostatic rebound and inward flow in the lower crust so that the range can grow. In this “mountain growth” regime the range evolves toward a characteristic graded shape that primarily depends on the erosion law. The erosion rate may be high (e.g., 0.5–0.9 mm/yr), close to the rate of tectonic uplift (e.g., 0.7–1.1 mm/yr), and few times higher than the rate of topographic uplift (0.15–0.2 mm/yr). These experiments show that surface processes can favor localized crustal shortening and participate in the development of an intracontinental mountain. Surface processes must therefore be taken into account in the interpretation and modeling of long-term deformation of continental lithosphere. Conversely, the mechanical response of the lithosphere must be accounted for when large-scale topographic features are interpreted and modeled in terms of geomorphologic processes

    Plastic flow and structural heterogeneities in silicate glasses - A high throughput investigation

    Get PDF
    Please click Additional Files below to see the full abstract

    The relativistic impulse approximation for the exclusive electrodisintegration of the deuteron

    Get PDF
    The electrodisintegration of the deuteron in the frame of the Bethe-Salpeter approach with a separable kernel of the nucleon-nucleon interaction is considered. This conception keeps the covariance of a description of the process. A comparison of relativistic and nonrelativistic calculations is presented. The factorization of the cross section of the reaction in the impulse approximation is obtained by analytical calculations. It is shown that the photon-neutron interaction plays an important role.Comment: 31 pages, 14 figures, 1 tabl

    Superscaling and Neutral Current Quasielastic Neutrino-Nucleus Scattering beyond the Relativistic Fermi Gas Model

    Get PDF
    The superscaling analysis is extended to include quasielastic (QE) scattering via the weak neutral current of neutrinos and antineutrinos from nuclei. The scaling function obtained within the coherent density fluctuation model (used previously in calculations of QE inclusive electron and charge-changing (CC) neutrino scattering) is applied to neutral current neutrino and antineutrino scattering with energies of 1 GeV from 12^{12}C with a proton and neutron knockout (u-channel inclusive processes). The results are compared with those obtained using the scaling function from the relativistic Fermi gas model and the scaling function as determined from the superscaling analysis (SuSA) of QE electron scattering.Comment: 10 pages, 6 figures, published in Phys. Rev.

    Paleomagnetic correlation of sedimentary sequences: The use of secular geomagnetic variations for the differentiation and correlation of Holocene Aral Sea deposits

    Get PDF
    The paper presents results demonstrating the possibility of using data on paleosecular magnetic variations for correlation of young deposits. Using Holocene deposits of the Aral Sea as an example, it is shown that the combination of paleo-and petromagnetic data can be used to reliably correlate sections in presently isolated parts of a basin, as well as to correlate paleohydrologic events and estimate their age with regard for absolute radiocarbon datings. It is established that the most significant drop in the Aral Sea level occurred more than 2000-2500 yr ago and less significant drops that occurred later are dated at about 1500, 750-1050, and 270-500 yr ago. © Pleiades Publishing, Ltd. 2007

    Fractional Langevin Equation: Over-Damped, Under-Damped and Critical Behaviors

    Full text link
    The dynamical phase diagram of the fractional Langevin equation is investigated for harmonically bound particle. It is shown that critical exponents mark dynamical transitions in the behavior of the system. Four different critical exponents are found. (i) αc=0.402±0.002\alpha_c=0.402\pm 0.002 marks a transition to a non-monotonic under-damped phase, (ii) αR=0.441...\alpha_R=0.441... marks a transition to a resonance phase when an external oscillating field drives the system, (iii) αχ1=0.527...\alpha_{\chi_1}=0.527... and (iv) αχ2=0.707...\alpha_{\chi_2}=0.707... marks transition to a double peak phase of the "loss" when such an oscillating field present. As a physical explanation we present a cage effect, where the medium induces an elastic type of friction. Phase diagrams describing over-damped, under-damped regimes, motion and resonances, show behaviors different from normal.Comment: 18 pages, 15 figure

    Materials characterisation and software tools as key enablers in Industry 5.0 and wider acceptance of new methods and products

    Get PDF
    Recently, the NMBP-35 Horizon 2020 projects -NanoMECommons, CHARISMA, and Easi-stress -organised a collaborative workshop to increase awareness of their contributions to the industry "commons" in terms of characterisation and digital transformation. They have established interoperability standards for knowledge management in characterisation and introduced new solutions for materials testing, aided by the standardisation of faster and more accurate assessment methods. The lessons learned from these projects and the discussions during the joint workshop emphasised the impact of recent developments and emerging needs in the field of characterisation. Specifically, the focus was on enhancing data quality through harmonisation and stand-ardisation, as well as making advanced technologies and instruments accessible to a broader community with the goal of fostering increased trust in new products and a more skilled society. Experts also highlighted how characterisation and the corresponding experimental data can drive future innovation agendas towards tech-nological breakthroughs. The focus of the discussion revolved around the characterisation and standardisation processes, along with the collection of modelling and characterisation tools, as well as protocols for data ex-change. The broader context of materials characterisation and modelling within the materials community was explored, drawing insights from the Materials 2030 Roadmap and the experiences gained from NMBP-35 pro-jects. This whitepaper has the objective of addressing common challenges encountered by the materials com-munity, illuminating emerging trends and evolving techniques, and presenting the industry's perspective on emerging requirements and past success stories. It accomplishes this by providing specific examples and high-lighting how these experiences can create fresh opportunities and strategies for newcomers entering the market. These advancements are anticipated to facilitate a more efficient transition from Industry 4.0 to 5.0 during the industrial revolution

    Distribution of Temperature and Strength in the Central Andean Lithosphere and Its Relationship to Seismicity and Active Deformation

    Get PDF
    We present three-dimensional (3D) models of the present-day steady-state conductive thermal field and strength distribution in the lithosphere beneath the Central Andes. Our primary objective was to investigate the influence that the structure of the Central Andean lithosphere has on its thermal and rheological state, and the relationship between the latter and the active deformation in the region. We used our previous data-driven and gravity-constrained 3D density model as starting point for the calculations. We first assigned lithology-derived thermal and rheological properties to the different divisions of the density model and defined temperature boundary conditions. We then calculated the 3D steady-state conductive thermal field and the maximum differential stresses for both brittle and ductile behaviors. We find that the thickness and composition of the crust are the main factors affecting the modeled thermal field, and consequently also the strength distribution. The orogen is characterized by a thick felsic crust with elevated temperatures and a low integrated strength, whereas the foreland and forearc are underlain by a more mafic and thinner crust with lower temperatures and a higher integrated strength. We find that most of the intraplate deformation coincides spatially with the steepest strength gradients and suggest that the high potential energy of the orogen together with the presence of rheological lateral heterogeneities produce high compressional stresses and strong strain localization along the margins of the orogen. We interpret earthquakes within the modeled ductile field to be related to the weakening effect of long-lived faults and/or the presence of seismic asperities.Fil: Ibarra, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Prezzi, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Bott, Judith. German Research Centre for Geosciences; AlemaniaFil: Scheck Wenderoth, Magdalena. German Research Centre for Geosciences; AlemaniaFil: Strecker, Manfred. Universitat Potsdam; Alemani

    Determination of Matter Surface Distribution of Neutron-rich Nuclei

    Full text link
    We demonstrate that the matter density distribution in the surface region is determined well by the use of the relatively low-intensity beams that become available at the upcoming radioactive beam facilities. Following the method used in the analyses of electron scattering, we examine how well the density distribution is determined in a model-independent way by generating pseudo data and by carefully applying statistical and systematic error analyses. We also study how the determination becomes deteriorated in the central region of the density, as the quality of data decreases. Determination of the density distributions of neutron-rich nuclei is performed by fixing parameters in the basis functions to the neighboring stable nuclei. The procedure allows that the knowledge of the density distributions of stable nuclei assists to strengthen the determination of their unstable isotopes.Comment: 41 pages, latex, 27 figure
    corecore