16,042 research outputs found
Recommended from our members
Equine degenerative myeloencephalopathy: prevalence, impact, and management.
Equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy is an inherited neurodegenerative disorder affecting many horse breeds. Clinical signs include a symmetric ataxia and an abnormal stance at rest, similar to cervical vertebral compressive myelopathy, equine protozoal myeloencephalitis, and equine herpesvirus 1 myeloencephalopathy. This review will provide an update on the disease prevalence, management, impact, and ongoing research
Forming norms: informing diagnosis and management in sports medicine
Clinicians aim to identify abnormalities, and distinguish harmful from harmless abnormalities. In sports medicine, measures of physical function such as strength, balance and joint flexibility are used as diagnostic tools to identify causes of pain and disability and monitor progression in response to an intervention. Comparing results from clinical measures against ‘normal’ values guides decision-making regarding health outcomes. Understanding ‘normal’ is therefore central to appropriate management of disease and disability. However, ‘normal’ is difficult to clarify and definitions are dependent on context. ‘Normal’ in the clinical setting is best understood as an appropriate state of physical function. Particularly as disease, pain and sickness are expected occurrences of being human, understanding ‘normal’ at each stage of the lifespan is essential to avoid the medicalisation of usual life processes. Clinicians use physical measures to assess physical function and identify disability. Accurate diagnosis hinges on access to ‘normal’ reference values for such measures. However our knowledge of ‘normal’ for many clinical measures in sports medicine is limited. Improved knowledge of normal physical function across the lifespan will assist greatly in the diagnosis and management of pain, disease and disability
Recommended from our members
Previously Identified Genetic Variants in ADGRL3 Are not Associated with Risk for Equine Degenerative Myeloencephalopathy across Breeds.
Equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM) is a neurologic disease that has been reported in young horses from a wide range of breeds. The disease is inherited and associated with vitamin E deficiency during the first two years of life, resulting in bilateral symmetric ataxia. A missense mutation (chr3:71,917,591 C > T) within adhesion G protein-coupled receptor L3 (ADGRL3) was recently associated with risk for EDM in the Caspian breed. In order to confirm these findings, genotyping of this missense mutation, along with the three other associated single nucleotide polymorphisms (SNPs) in the genomic region, was carried out on 31 postmortem-confirmed eNAD/EDM cases and 43 clinically phenotyped controls from various breeds. No significant association was found between eNAD/EDM confirmed cases and genotype at any of the four identified SNPs (P > 0.05), including the nonsynonymous variant (EquCab2.0 chr3:71,917,591; allelic P = 0.85). These findings suggest that the four SNPs, including the missense variant in the ADGRL3 region, are not associated with risk for eNAD/EDM across multiple breeds of horses
Arsenite-Induced Alterations of DNA Photodamage Repair and Apoptosis After Solar-Simulation UVR in Mouse Keratinocytes in Vitro
Our laboratory has shown that arsenite markedly increased the cancer rate caused by solar-simulation ultraviolet radiation (UVR) in the hairless mouse skin model. In the present study, we investigated how arsenite affected DNA photodamage repair and apoptosis after solar-simulation UVR in the mouse keratinocyte cell line 291.03C. The keratinocytes were treated with different concentrations of sodium arsenite (0.0, 2.5, 5.0 μM) for 24 hr and then were immediately irradiated with a single dose of 0.30 kJ/m(2) UVR. At 24 hr after UVR, DNA photoproducts [cyclobutane pyrimidine dimers (CPDs) and 6–4 photoproducts (6-4PPs)] and apoptosis were measured using the enzyme-linked immunosorbent assay and the two-color TUNEL (terminal deoxynucleotide transferase dUTP nick end labeling) assay, respectively. The results showed that arsenite reduced the repair rate of 6-4PPs by about a factor of 2 at 5.0 μM and had no effect at 2.5 μM. UVR-induced apoptosis at 24 hr was decreased by 22.64% at 2.5 μM arsenite and by 61.90% at 5.0 μM arsenite. Arsenite decreased the UVR-induced caspase-3/7 activity in parallel with the inhibition of apoptosis. Colony survival assays of the 291.03C cells demonstrate a median lethal concentration (LC(50)) of arsenite of 0.9 μM and a median lethal dose (LD(50)) of UVR of 0.05 kJ/m(2). If the present results are applicable in vivo, inhibition of UVR-induced apoptosis may contribute to arsenite’s enhancement of UVR-induced skin carcinogenesis
An experimental feasibility study for the preparation of thermo-oxidatively stable Pyrrone laminates
Synthesis of Pyrrone laminates from sulfone dianhydrid
Reasoning about goal-directed real-time teleo-reactive programs
The teleo-reactive programming model is a high-level approach to developing real-time systems that supports hierarchical composition and durative actions. The model is different from frameworks such as action systems, timed automata and TLA+, and allows programs to be more compact and descriptive of their intended behaviour. Teleo-reactive programs are particularly useful for implementing controllers for autonomous agents that must react robustly to their dynamically changing environments. In this paper, we develop a real-time logic that is based on Duration Calculus and use this logic to formalise the semantics of teleo-reactive programs. We develop rely/guarantee rules that facilitate reasoning about a program and its environment in a compositional manner. We present several theorems for simplifying proofs of teleo-reactive programs and present a partially mechanised method for proving progress properties of goal-directed agents. © 2013 British Computer Society
Towards structured sharing of raw and derived neuroimaging data across existing resources
Data sharing efforts increasingly contribute to the acceleration of
scientific discovery. Neuroimaging data is accumulating in distributed
domain-specific databases and there is currently no integrated access mechanism
nor an accepted format for the critically important meta-data that is necessary
for making use of the combined, available neuroimaging data. In this
manuscript, we present work from the Derived Data Working Group, an open-access
group sponsored by the Biomedical Informatics Research Network (BIRN) and the
International Neuroimaging Coordinating Facility (INCF) focused on practical
tools for distributed access to neuroimaging data. The working group develops
models and tools facilitating the structured interchange of neuroimaging
meta-data and is making progress towards a unified set of tools for such data
and meta-data exchange. We report on the key components required for integrated
access to raw and derived neuroimaging data as well as associated meta-data and
provenance across neuroimaging resources. The components include (1) a
structured terminology that provides semantic context to data, (2) a formal
data model for neuroimaging with robust tracking of data provenance, (3) a web
service-based application programming interface (API) that provides a
consistent mechanism to access and query the data model, and (4) a provenance
library that can be used for the extraction of provenance data by image
analysts and imaging software developers. We believe that the framework and set
of tools outlined in this manuscript have great potential for solving many of
the issues the neuroimaging community faces when sharing raw and derived
neuroimaging data across the various existing database systems for the purpose
of accelerating scientific discovery
- …