11,403 research outputs found

    Some studies on the behavior of W-RE thermocouple materials at high temperatures

    Get PDF
    Bare 0.25 mm diameter W-Re alloy thermoelements (W, W-3% Re, W-5% Re and W-25%) and BeO-insulated W-3% Re and W-25% Re thermoelements were examined for metallurgical, chemical and thermal emf changes after testing for periods up to 1000 hours at temperatures principally in the range 2000 to 2400 K. Environments for the tests consisted of high purity argon, hydrogen, helium or nitrogen gases. Commercially obtained bare-wire thermoelements typically exhibited a shift in their emf-temperature relationship upon initial exposure. The shift was completed by thermally aging the W-3% Re thermoelement for 1 hour and the W-25% Re thermoelement for 2 minutes at 2400 K in argon or hydrogen. Aged thermoelements experienced no appreciable drift with subsequent exposure at 2400 K in the gaseous environments. The chemically doped W3% Re thermoelement retained a small-grained structure for exposure in excess of 50 hours at 2400 K. BeO-insulated thermoelement assemblies showed varied behavior that depended upon the method of exposure. However, when the assemblies were heated in a furnace, no serious material incompatibility problems were found if the materials were given prior thermal treatments. Thermocouples, assembled from aged W-3% Re and W-25% Re thermoelements and degassed sintered BeO insulators, exhibited a drift of only 2 to 3 K during exposure in argon at 2070 K for 1029 hours

    The determination of atmospheric temperature profiles from planetary limb radiance profiles

    Get PDF
    Inverted planetary limb radiance for determining earth atmosphere temperature from orbiting satellit

    High reliability sheathed, beryllia insulated, tungsten-rhenium alloy thermocouple assemblies; their fabrication and EMF stability

    Get PDF
    Tantalum sheathed, BeO insulated, W-3% Re/W-25% Re thermocouple assemblies were fabricated and their emf drift determined during 2059 hours of exposure at 2073 K in a gaseous helium environment. The sheathed thermocouple assemblies were constructed from aged thermoelements, specially heat-treated BeO insulators, and specially cleaned and etched tantalum sheaths. Their thermal emf drifts ranged from the equivalent of only -0.3 to -0.8 K drift per 1000 hours of exposure at 2073 K. No evidence of any gross chemical attack or degradation of the component materials was found. The emf drift and material behavior of some unsheathed, BeO insulated, W-3% Re/W-25% Re thermocouples at 2250 and 2400 K were also determined. Unsheathed thermocouples tested in an argon environment at 2250 K for 1100 hours and at 2400 K for 307 hours exhibited changes in thermal emf that typically ranged from the equivalent of a few degrees K to as much as +11 K. Post-test examinations of these thermocouples revealed some undesirable material degradation and interaction which included erosion of the BeO insulators and contamination of the thermoelements by tantalum from the tantalum blackbody enclosure in which the thermocouples were contained

    Degradation of Fe-Mg silicates in hot CO2 atmospheres: Applications to Venus

    Get PDF
    Experiments demonstrated that oxidation of ferromagnesian silicates and magnetite occurs when these minerals are heated at 800 C in 1 atmosphere of CO2, under which conditions hematite is thermodynamically stable. The 30 ppm oxygen impurity in CO2 presumably facilitates the oxidation of some of the ferrous iron initially present in the crystal structures of the minerals. Mossbauer spectral measurements reveal, however, that only CO2 degraded olivine and pigeonite is hematite formed as a magnetically ordered phase at ambient temperatures. In orthopyroxene, some of the ferric iron produced by oxidation is present as nanophase hematite which, because it remains superparamagnetic until 4.2 K, must exist as particles less than or equal to 4 nm in diameter. In the calcic pyroxenes much of the oxidized ferrous iron may still remain as structural Fe3(+) in the host silicates. Some ferric iron may also be present as unit cell sized Fe2O3 inclusions in the pyroxenes, or be segregated along cleavage planes, or be coating mineral grains. In these states of aggregation, the Fe2O3 is unidentifiable by x ray diffraction and in low temperature Mossbauer spectra. Applications of this research to the surface of Venus are discussed

    Finite momentum condensation in a pumped microcavity

    Full text link
    We calculate the absorption spectra of a semiconductor microcavity into which a non-equilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation, and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.Comment: 7 pages, 4 figures, updated to accepted versio

    A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    Get PDF
    A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally

    Adaptive finite element computations of shear band formation

    Get PDF

    Determining the phonon DOS from specific heat measurements via maximum entropy methods

    Get PDF
    The maximum entropy and reverse Monte-Carlo methods are applied to the computation of the phonon density of states (DOS) from heat capacity data. The approach is introduced and the formalism is described. Simulated data is used to test the method, and its sensitivity to noise. Heat capacity measurements from diamond are used to demonstrate the use of the method with experimental data. Comparison between maximum entropy and reverse Monte-Carlo results shows the form of the entropy used here is correct, and that results are stable and reliable. Major features of the DOS are picked out, and acoustic and optical phonons can be treated with the same approach. The treatment set out in this paper provides a cost-effective and reliable method for studies of the phonon properties of materials.Comment: Reprint to improve access. 10 pages, 6 figure

    An artificially generated atmosphere near a lunar base

    Get PDF
    We discuss the formation of an artificial atmosphere generated by vigorous lunar base activity in this paper. We developed an analytical, steady-state model for a lunar atmosphere based upon previous investigations of the Moon's atmosphere from Apollo. Constant gas-injection rates, ballistic trajectories, and a Maxwellian particle distribution for an oxygen-like gas are assumed. Even for the extreme case of continuous He-3 mining of the lunar regolith, we find that the lunar atmosphere would not significantly degrade astronomical observations beyond about 10 km from the mining operation
    corecore