5,639 research outputs found

    EBSD mapping of herringbone domain structures in tetragonal piezoelectrics

    Get PDF
    Herringbone domain structures have been mapped using electron backscatter diffraction (EBSD) in two tetragonal piezoelectrics, lead zirconate titanate, [Pb(Zr,Ti)O<sub>3</sub>] and bismuth ferrite – lead titanate, [(PbTi)<sub>0.5</sub>(BiFe)<sub>0.5</sub>O<sub>3</sub>]. Analysis of the domain misorientations across the band junctions shows that the structures correspond very well to crystallographic models. High resolution mapping with a 20 nm step size allowed the crystal rotation across one of these band junctions in lead zirconate titanate to be studied in detail and allowed an improved estimation of the peak strain at the junction, of 0.56 GPa. The significance of this for crack nucleation and propagation in such materials is discussed

    Hydrogen and fluorine in the surfaces of lunar samples

    Get PDF
    The resonant nuclear reaction F-19 (p, alpha gamma)0-16 has been used to perform depth sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction has been applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of about 1/2 micrometer. These results are interpreted in terms of terrestrial H2O surface contamination and a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H2O into laboratory glass samples which have been irradiated with 0-16 to simulate the radiation damaged surfaces of lunar glasses. Fluorine determinations have been performed in a 1 pm surface layer on lunar samples using the same F-19 alpha gamma)0-16 resonance. The data are discussed from the standpoint of lunar fluorine and Teflon contamination

    Assessment of the biophysical characteristics of rangeland community using scatterometer and optical measurements

    Get PDF
    Research activities for the following study areas are summarized: single scattering of parallel direct and axially symmetric diffuse solar radiation in vegetative canopies; the use of successive orders of scattering approximations (SOSA) for treating multiple scattering in a plant canopy; reflectance of a soybean canopy using the SOSA method; and C-band scatterometer measurements of the Konza tallgrass prairie

    Formation of fundamental structures in Bose-Einstein Condensates

    Full text link
    The meanfield interaction in a Bose condensate provides a nonlinearity which can allow stable structures to exist in the meanfield wavefunction. We discuss a number of examples where condensates, modelled by the one dimensional Gross Pitaevskii equation, can produce gray solitons and we consider in detail the case of two identical condensates colliding in a harmonic trap. Solitons are shown to form from dark interference fringes when the soliton structure, constrained in a defined manner, has lower energy than the interference fringe and an analytic expression is given for this condition.Comment: 7 pages, 3 figures, requires ioplppt.st

    Regulation of rat liver microsomal cholesterol 7α-hydroxylase: Presence of a cytosolic activator

    Get PDF

    LabView Interface for School-Network DAQ Card

    Get PDF
    A low-cost DAQ card has been developed for school-network cosmic ray detector projects, providing digitized data from photomultiplier tubes via a standard serial interface. To facilitate analysis of these data and to provide students with a starting point for custom readout systems, a model interface has been developed using the National Instruments LabVIEW(R) system. This user-friendly interface allows one to initialize the trigger coincidence conditions for data-taking runs and to monitor incoming or pre-recorded data sets with updating singles- and coincidence-rate plots and other user-selectable histograms.Comment: 4 pages, 6 figures. Presented as Paper NS26-119 at IEEE-NSS 2003, Portland, OR, by R. J. Wilke

    The Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls

    Full text link
    Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical pre-factor of order unity, this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical pre-factor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.Comment: 7 pages, 3 figure
    • …
    corecore