184 research outputs found

    Steps toward accurate large-area analyses of Genesis solar wind samples: evaluation of surface cleaning methods using total reflection X-ray fluorescence spectrometry

    Get PDF
    Total reflection X-ray fluorescence spectrometry (TXRF) was used to analyze residual surface contamination on Genesis solar wind samples and to evaluate different cleaning methods. To gauge the suitability of a cleaning method, two samples were analyzed following cleaning by lab-based TXRF. The analysis comprised an overview and a crude manual mapping of the samples by orienting them with respect to the incident X-ray beam in such a way that different regions were covered. The results show that cleaning with concentrated hydrochloric acid and a combination of hydrochloric acid and hydrofluoric acid decreased persistent inorganic contaminants substantially on one sample. The application of CO2 snow for surface cleaning tested on the other sample appears to be effective in removing one persistent Genesis contaminant, namely germanium. Unfortunately, the TXRF analysis results of the second sample were impacted by relatively high background contamination. This was mostly due to the relatively small sample size and that the solar wind collector was already mounted with silver glue for resonance ion mass spectrometry (RIMS) on an aluminium stub. Further studies are planned to eliminate this problem. In an effort to identify the location of very persistent contaminants, selected samples were also subjected to environmental scanning electron microscopy. The results showed excellent agreement with TXRF analysis

    Steps Toward Accurate Large Area Analyzes of Genesis Solar Wind Samples: Evaluation of Surface Cleaning Methods Using Total Reflection X-ray Fluorescence Spectrometry

    Get PDF
    Total reflection X-ray fluorescence spectrometry (TXRF) was used to analyze residual surface contamination on Genesis solar wind samples and to evaluate different cleaning methods. The Genesis mission collected solar wind during a period of 854 days by embedding the charged particles into collectors made of various ultra clean materials such as silicon, sapphire and silicon-on-sapphire. The sample return capsule unexpectedly crashed on return to Earth fracturing the collectors and exposing them to the desert soil of the landing side. The ubiquitous contaminants are separated from the atoms of solar wind by only 5-15 nm, presenting significant challenges for solar wind analysis as well as the development of cleaning techniques. Currently, an ultrapure water and ozone UV radiation treatment is routinely applied to the collectors by the curatorial team at NASA’s Johnson Space Center. Additional cleaning steps involving various forms of acid treatment and/or carbon dioxide snow treatment are being evaluated as well. To gauge the suitability of the cleaning method, two samples were analyzed following cleaning by lab-based TXRF. The analysis comprised of an overview and a crude manual mapping of the samples by orienting them with respect to the incident X-ray beam in such way that different regions were covered. The results showed that cleaning with concentrated hydrochloric acid and a combination of hydrochloric acid and hydrofluoric acid decreased persistent inorganic contaminants substantially on one sample. Application of carbon dioxide snow for surface cleaning tested on the other sample appears to be effective in removing one persistent Genesis contaminant, namely germanium. Unfortunately, the TXRF analysis results of the second sample were impacted by relatively high background contamination. This was mostly due to the relatively small sample size and that the solar wind collector was already mounted with silver glue for resonance ion mass spectrometry (RIMS) on an aluminum stub. Further studies are planned to eliminate this problem. In an effort to identify the location of very persistent contaminants, selected samples were also subjected to environmental scanning electron microscopy. The results showed excellent agreement with TXRF analysis

    Genesis capsule yields solar wind samples

    Get PDF
    NASA's Genesis capsule, carrying the first samples ever returned from beyond the Moon, took a hard landing in the western Utah desert on 8 September after its parachutes failed to deploy Despite the impact, estimated at 310 km per hour, some valuable solar wind collector materials have been recovered. With these samples, the Genesis team members are hopeful that nearly all of the primary science goals may be met. The Genesis spacecraft was launched in August 2001 to collect and return samples of solar wind for precise isotopic and elemental analysis. The spacecraft orbited the Earth-Sun Lagrangian point (LI), ˜1.5 million km sunward of Earth, for 2.3 years. It exposed ultrapure materials—including wafers of silicon, silicon carbide, germanium, chemically deposited diamond, gold, aluminum, and metallic glass— to solar wind ions, which become embedded within the substrates' top 100 nm of these materials

    Noble gas elemental abundances in three solar wind regimes as recorded by the Genesis mission

    Get PDF
    We discuss elemental abundances of noble gases in targets exposed to the solar wind (SW) onboard the “Genesis” mission during the three different SW “regimes”: “Slow” (interstream, IS) wind, “Fast” (coronal hole, CH) wind and solar wind related to coronal mass ejections (CME). To this end we first present new Ar, Kr, and Xe elemental abundance data in Si targets sampling the different regimes. We also discuss He, Ne, and Ar elemental and isotopic abundances obtained on Genesis regime targets partly published previously. Average Kr/Ar ratios for all three regimes are identical to each other within their uncertainties of about 1% with one exception: the Fast SW has a 12% lower Xe/Ar ratio than do the other two regimes. In contrast, the He/Ar and Ne/Ar ratios in the CME targets are higher by more than 20% and 10%, respectively, than the corresponding Fast and Slow SW values, which among themselves vary by no more than 2–4%. Earlier observations on lunar samples and Genesis targets sampling bulk SW wind had shown that Xe, with a first ionisation potential (FIP) of ∌12 eV, is enriched by about a factor of two in the bulk solar wind over Ar and Kr compared to photospheric abundances, similar to many “low FIP” elements with a FIP less than ∌10 eV. This behaviour of the “high FIP” element Xe was not easily explained, also because it has a Coulomb drag factor suggesting a relatively inefficient feeding into the SW acceleration region and hence a depletion relative to other high FIP elements such as Kr and Ar. The about 12% lower enrichment of Xe in Genesis’ Fast SW regime observed here is, however, in line with the hypothesis that the depletion of Xe in the SW due to the Coulomb drag effect is overcompensated as a result of the relatively short ionisation time of Xe in the ion-neutral separation region in the solar chromosphere. We will also discuss the rather surprising fact that He and Ne in CME targets are quite substantially enriched (by 20% and 10%, respectively) relative to the other solar wind regimes, but that this enrichment is not accompanied by an isotopic fractionation. The Ne isotopic data in CMEs are consistent with a previous hypothesis that isotopic fractionation in the solar wind is mass-dependent

    Electron Microprobe/SIMS Determinations of Al in Olivine: Applications to Solar Wind, Pallasites and Trace Element Measurements

    Get PDF
    Electron probe microanalyser measurements of trace elements with high accuracy are challenging. Accurate Al measurements in olivine are required to calibrate SIMS implant reference materials for measurement of Al in the solar wind. We adopt a combined EPMA/SIMS approach that is useful for producing SIMS reference materials as well as for EPMA at the ~100 ”g g⁻Âč level. Even for mounts not polished with alumina photoelectron spectroscopy shows high levels of Al surface contamination. In order to minimise electron beam current density, a rastered 50 × 100 ”m electron beam was adequate and minimised sensitivity to small Al‐rich contaminants. Reproducible analyses of eleven SIMS cleaned spots on San Carlos olivine agreed at 69.3 ± 1.0 ”g g⁻Âč. The known Al mass fraction was used to calibrate an Al implant into San Carlos. Accurate measurements of Al were made for olivines in the pallasites: Imilac, Eagle Station and Springwater. Our focus was on Al in olivine; but our technique could be refined to give accurate electron probe measurements for other contamination‐sensitive trace elements. For solar wind it is projected that the Al/Mg abundance ratio can be determined to 6%, a factor of 2 more precise than the solar spectroscopic ratio

    Solar Wind Neon from Genesis: Implications for the Lunar Noble Gas Record

    Get PDF
    Lunar soils have been thought to contain two solar noble gas components with distinct isotopic composition. One has been identified as implanted solar wind, the other as higher-energy solar particles. The latter was puzzling because its relative amounts were much too large compared with present-day fluxes, suggesting periodic, very high solar activity in the past. Here we show that the depth-dependent isotopic composition of neon in a metallic glass exposed on NASA's Genesis mission agrees with the expected depth profile for solar wind neon with uniform isotopic composition. Our results strongly indicate that no extra high-energy component is required and that the solar neon isotope composition of lunar samples can be explained as implantation-fractionated solar wind
    • 

    corecore