109 research outputs found

    The isolation of microsatellite loci in the Mediterranean fruitfly Ceratitis capitata (Diptera: Tephritidae) using a biotin/streptavidin enrichment technique

    Get PDF
    The Medfly (Ceratitis capitata) is a polyphagous dipteran pest which has spread from North Africa to the countries of the Mediterranean Basin and has also invaded tropical and subtropical regions throughout the world. Colonizing populations typically possess low levels of genetic variability. Microsatellites provide an effective means of investigating the population structure of such genetically depauperate populations, however, microsatellite markers traditionally require a long phase of development in new taxa. We used a biotin/streptavidin capture technique to isolate microsatellites directly from C. capitata genomic DNA and we describe here the identification of seven polymorphic microsatellite markers in C. capitat

    Heterorhabditis, Steinernema and their bacterial symbionts - lethal pathogens of insects

    Get PDF
    The entomopathogenic nematodes (EPN) Heterorhabditis and Steinernema together with their symbiont bacteria Photorhabdus and Xenorhabdus, respectively, are obligate and lethal parasites of insects. EPN can provide effective biological control of some important lepidopteran, dipteran and coleopteran pests of commercial crops and they are amenable to large-scale culture in liquid fermentors. They are unique among rhabditids in having a symbiotic relationshipwith an enteric bacterium species. The bacterial symbiont is required to kill the insect host and to digest the host tissues, thereby providing suitable nutrient conditions for nematode growth and development. This review describes the general biology of EPN and their symbionts and gives an overview of studies to date on EPN biodiversity, biogeography and phylogeny. The impetus for research in EPN and their symbionts has come about because of their biological control potential, with much of the focus in EPN research having been on applied aspects relating to pest control. However EPN and their symbionts are increasinglybeing viewed as exciting subjects for basic research in the areas of ecology, biodiversity, evolution, biochemistry, symbiosis and molecular genetics. Much progress has been made over the past 20 years in our understanding of the basic biology and genetics of EPN and their symbionts. We are now entering a new phase in which the tools of molecular genetics are being increasingly used to address a range of biological questions in EPN research. The knowledge gained from this endeavour should ensure that EPN will become even more effective biopesticides and should also ensure that EPN and their symbionts gain prominence as unique and intrinsically interesting biological systems

    Morphological characterisation of three isolates of Heterorhabditis Poinar, 1976 from the "Irish group" (Nematoda: Rhabditida: Heterorhabditidae)and additional evidence supporting their recognition as a distinct species, H. downesi n. sp

    Get PDF
    The morphological variation of three representative isolates of the "Irish group" of Heterorhabditis was examined. First generation hermaphrodites were characterised by having a blunt and mucronate tail. Females (second generation) and third-stage infective juveniles were also distinguished by the morphology of the tail and the presence of a refractile projection in the tail tip. Males were characterised by the position of the excretory pore and by the value of ratio SW. These morphological features do not fit the description of currently recognised Heterorhabditis species, and provide additional evidence in support for the consideration of the Irish group as a new species. A description of this species, as H. downesi n. sp., is provided

    Morphological characterisation of three isolates of Heterorhabditis Poinar, 1976 from the "Irish group" (Nematoda: Rhabditida: Heterorhabditidae)and additional evidence supporting their recognition as a distinct species, H. downesi n. sp

    Get PDF
    The morphological variation of three representative isolates of the "Irish group" of Heterorhabditis was examined. First generation hermaphrodites were characterised by having a blunt and mucronate tail. Females (second generation) and third-stage infective juveniles were also distinguished by the morphology of the tail and the presence of a refractile projection in the tail tip. Males were characterised by the position of the excretory pore and by the value of ratio SW. These morphological features do not fit the description of currently recognised Heterorhabditis species, and provide additional evidence in support for the consideration of the Irish group as a new species. A description of this species, as H. downesi n. sp., is provided

    Plant desiccation gene found in a nematode

    Get PDF
    Included in tex

    Dehydration-induced tps gene transcripts from an anhydrobiotic nematode contain novel spliced leaders and encode atypical GT-20 family proteins

    Get PDF
    Accumulation of the non-reducing disaccharide trehalose is associated with desiccation tolerance during anhydrobiosis in a number of invertebrates, but there is little information on trehalose biosynthetic genes in these organisms.We have identified two trehalose-6-phosphate synthase (tps) genes in the anhydrobiotic nematode Aphelenchus avenae and determined full length cDNA sequences for both; for comparison, full length tps cDNAs from the model nematode, Caenorhabditis elegans, have also been obtained. The A. avenae genes encode very similar proteins containing the catalytic domain characteristic of the GT-20 family of glycosyltransferases and are most similar to tps-2 of C. elegans; no evidence was found for a gene in A. avenae corresponding to Ce-tps-1. Analysis of A. avenae tps cDNAs revealed several features of interest, including alternative trans-splicing of spliced leader sequences in Aav-tps-1, and four different, novel SL1-related transspliced leaders, which were different to the canonical SL1 sequence found in all other nematodes studied. The latter observation suggests that A. avenae does not comply with the strict evolutionary conservation of SL1 sequences observed in other species. Unusual features were also noted in predicted nematode TPS proteins, which distinguish them from homologues in other higher eukaryotes (plants and insects) and in micro-organisms. Phylogenetic analysis confirmed their membership of the GT-20 glycosyltransferase family, but indicated an accelerated rate of molecular evolution. Furthermore, nematode TPS proteins possess N- and C-terminal domains, which are unrelated to those of other eukaryotes: nematode C-terminal domains, for example, do not contain trehalose-6-phosphate phosphatase-like sequences, as seen in plant and insect homologues. During onset of anhydrobiosis, both tps genes in A. avenae are upregulated, but exposure to cold or increased osmolarity also results in gene induction, although to a lesser extent. Trehalose seems likely therefore to play a role in a number of stress responses in nematodes

    Characterization of Heterorhabditis isolates by PCR amplification of segments of mtDNA and rDNA genes

    Get PDF
    Restriction digests of amplified DNA from the mitochondrial genome and the nuclear ribosomal internally transcribed spacer region have been evaluated as genetic markers for species groups in Heterorhabditis. Six RFLP profiles have been identified. These profiles supported groupings determined by cross-breeding studies and were in agreement with less definitive groupings based on other biochemical and molecular methods. Digestion patterns of both amplification products provided strong evidence for the recognition of species groups, which include Irish, NW European, tropical, and a H. bacteriophora complex. The H. bacteriophora complex could be further resolved into three genotypes represented by H. zealandica, the H. bacteriophora, Brecon (Australian) type isolate for H. bacteriophora, and a grouping composed of isolates NC1, V16, HI82, and HP88. All cultures obtained of the H. megidis isolate were identical to the NW European group. These results could be used to aid monitoring of field release of Heterorhabditis as well as allowing a rapid initial assessment of taxonomic grouping

    Characterization of \u3ci\u3eHeterorhabditis\u3c/i\u3e Isolates by PCR Amplification of Segments of mtDNA and rDNA Genes

    Get PDF
    Restriction digests of amplified DNA from the mitochondrial genome and the nuclear ribosomal internally transcribed spacer region have been evaluated as genetic markers for species groups in Heterorhabditis. Six RFLP profiles have been identified. These profiles supported groupings determined by cross-breeding studies and were in agreement with less definitive groupings based on other biochemical and molecular methods. Digestion patterns of both amplification products provided strong evidence for the recognition of species groups, which include Irish, NW European, tropical, and a H. bacteriophora complex. The H. bacteriophora complex could be further resolved into three genotypes represented by H. zealandica, the H. bacteriophora, Brecon (Australian) type isolate for H. bacteriophora, and a grouping composed of isolates NC1, V16, HI82, and HP88. All cultures obtained of the H. megidis isolate were identical to the NW European group. These results could be used to aid monitoring of field release of Heterorhabditis as well as allowing a rapid initial assessment of taxonomic grouping

    Alternate metabolism during the dauer stage of the nematode Caenorhabditis elegans

    Get PDF
    When environmental conditions are unsuitable to support nematode reproduction, Caenorhabditis elegans arrests development before the onset of sexual maturity and specialised âdauerâ larvae, adapted for dispersal, and extended diapause are formed. Dauer larvae do not feed and their metabolism is dependent on internal food reserves. Adult worms which express defects in the insulin/insulin-like growth factor receptor DAF-2 also display enhanced longevity. Whole genome mRNA expression profiling has demonstrated that C. elegans dauer larvae and daf-2 adults have similar transcription profiles for a cohort of longevity genes. Important components of this enhanced longevity system are the a-crystallin family of small heat shock proteins, anti-ROS defence systems, increased activity of cellular detoxification processes and possibly also increased chromatin stability and decreased protein turnover. Anaerobic fermentation pathways are upregulated in dauer larvae, while long-lived daf-2 adults appear to have normal oxidative metabolism. Anabolic pathways are down regulated in dauer larvae (and possibly in daf-2 adults as well), and energy consumption appears to be diverted to enhanced cellular maintenance and detoxification processes in both systems

    Multiple lineage specific expansions within the guanylyl cyclase gene family

    Get PDF
    BACKGROUND: Guanylyl cyclases (GCs) are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs) which are found ubiquitously in cell cytoplasm, and receptor (rGC) forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla. RESULTS: In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO) insensitive insect and nematode sGCs which are regulated by O(2). This suggests that the primordial eukaryotes probably utilized sGC as an O(2 )sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source. CONCLUSION: The most salient feature of our phylogenies is the number of lineage specific expansions, which have occurred within the GC gene family during metazoan evolution. Our phylogenetic analyses reveal that the rGC and sGC multi-domain proteins evolved early in eumetazoan evolution. Subsequent gene duplications, tissue specific expression patterns and lineage specific expansions resulted in the evolution of new networks of interaction and new biological functions associated with the maintenance of organismal complexity and homeostasis
    • …
    corecore