2,472 research outputs found

    A novel method for the injection and manipulation of magnetic charge states in nanostructures

    Get PDF
    Realising the promise of next-generation magnetic nanotechnologies is contingent on the development of novel methods for controlling magnetic states at the nanoscale. There is currently demand for simple and flexible techniques to access exotic magnetisation states without convoluted fabrication and application processes. 360 degree domain walls (metastable twists in magnetisation separating two domains with parallel magnetisation) are one such state, which is currently of great interest in data storage and magnonics. Here, we demonstrate a straightforward and powerful process whereby a moving magnetic charge, provided experimentally by a magnetic force microscope tip, can write and manipulate magnetic charge states in ferromagnetic nanowires. The method is applicable to a wide range of nanowire architectures with considerable benefits over existing techniques. We confirm the method's efficacy via the injection and spatial manipulation of 360 degree domain walls in Py and Co nanowires. Experimental results are supported by micromagnetic simulations of the tip-nanowire interaction.Comment: in Scientific Reports (2016

    Olfactory variation in mouse husbandry and its implications for refinement and standardisation: UK survey of non-animal scents

    Get PDF
    With their highly sensitive olfactory system, the behaviour and physiology of mice are not only influenced by the scents of conspecifics and other species, but also by many other chemicals in the environment. The constraints of laboratory housing limit a mouse’s capacity to avoid aversive odours that could be present in the environment. Potentially odorous items routinely used for husbandry procedures, such as sanitizing products and gloves, could be perceived by mice as aversive or attractive, and affect their behaviour, physiology and experimental results. A survey was sent to research institutions in the UK to enquire about husbandry practices that could impact on the olfactory environment of the mouse. Responses were obtained from 80 individuals working in 51 institutions. Husbandry practices varied considerably. Seventy percent of respondents reported always wearing gloves for handling mice, with nitrile being the most common glove material (94%) followed by latex (23%) and vinyl (14%). Over six different products were listed for cleaning surfaces, floors, anaesthesia and euthanasia chambers and behavioural apparatus. In all cases Trigene™ (now called Anistel™) was the most common cleaning product used (43, 41, 40 and 49%, respectively). Depending on the attribute considered, between 7 and 19% of respondents thought that cleaning products definitely, or were likely to, have strong effects on standardization, mouse health, physiology or behaviour. Understanding whether and how these odours affect mouse welfare will help to refine mouse husbandry and experimental procedures through practical recommendations, to improve the quality of life of laboratory animals and the experimental data obtained

    Measurement of the Integrated Faraday Rotations of BL Lac Objects

    Full text link
    We present the results of multi-frequency polarization VLA observations of radio sources from the complete sample of northern, radio-bright BL Lac objects compiled by H. Kuhr and G. Schmidt. These were used to determine the integrated rotation measures of 18 objects, 15 of which had never been measured previously, which hindered analysis of the intrinsic polarization properties of objects in the complete sample. These measurements make it possible to correct the observed orientations of the linear polarizations of these sources for the effect of Faraday rotation. The most probable origin for Faraday rotation in these objects is the Galactic interstellar medium. The results presented complete measurements of the integrated rotation measures for all 34 sources in the complete sample of BL Lac objects.Comment: 9 pages, 7 figure

    Effect of generation on the electronic properties of light-emitting dendrimers

    Get PDF
    We have compared the optical and electronic properties of a series of porphyrin centred dendrimers containing stilbene dendrons. The first and second generation dendrimers could be spin-coated from solution to form good quality thin films. Incorporation into single layer light-emitting diodes gave red-light emission with maximum external quantum efficiencies of 0.02% and 0.04% for the first and second generation dendrimers respectively. We have determined by photoluminescence studies that energy can be transferred efficiently from the stilbene dendrons to the porphyrin core and that PL emission is from the core. Cyclic voltammetry studies on the dendrimers show that the reductions are porphyrin centred with the dendrons only affecting the rate of heterogeneous electron transfer between the electrode and the dendrimers. This suggests that charge mobility within a dendrimer film in an LED will be affected by the porphyrin edge to porphyrin edge distance. We have studied the hydrodynamic radii of the dendrimers by gel permeation chromatography and found as expected that the average porphyrin edge to dendron edge distance increases with generation This is consistent with the slowing of heterogeneous electron transfer observed in the cyclic voltammetry on increasing the generation number and suggests that the dendrons are interleaved in the solid state to facilitate charge transport

    Statistical Properties of Galactic Starlight Polarization

    Full text link
    We present a statistical analysis of Galactic interstellar polarization from the largest compilation available of starlight data. The data comprises ~ 9300 stars of which we have selected ~ 5500 for our analysis. We find a nearly linear growth of mean polarization degree with extinction. The amplitude of this correlation shows that interstellar grains are not fully aligned with the Galactic magnetic field, which can be interpreted as the effect of a large random component of the field. In agreement with earlier studies of more limited scope, we estimate the ratio of the uniform to the random plane-of-the-sky components of the magnetic field to be B_u/B_r = 0.8. Moreover, a clear correlation exists between polarization degree and polarization angle what provides evidence that the magnetic field geometry follows Galactic structures on large-scales. The angular power spectrum C_l of the starlight polarization degree for Galactic plane data (|b| < 10 deg) is consistent with a power-law, C_l ~ l^{-1.5} (where l ~ 180 deg/\theta is the multipole order), for all angular scales \theta > 10 arcmin. An investigation of sparse and inhomogeneous sampling of the data shows that the starlight data analyzed traces an underlying polarized continuum that has the same power spectrum slope, C_l ~ l^{-1.5}. Our findings suggest that starlight data can be safely used for the modeling of Galactic polarized continuum emission at other wavelengths.Comment: 31 pages, 11 figures. Minor corrections and some clarifications included. Matches version accepted for publication by the Astrophysical Journa

    Evidence for Ordered Magnetic Fields in the Quasar Environment

    Get PDF
    At a distance of 20 pc from the purported supermassive black hole powering quasars, temperatures and densities are inferred from optical observations to be ~10**4 K and ~10**4 cm**-3. Here we present Very Long Baseline Interferometry radio observations revealing organized magnetic fields on the parsec scale in the hot plasma surrounding the quasar OQ172 (1442+101). These magnetic fields rotate the plane of polarization of the radio emission coming from the core and inner jet of the quasar. The derived rotation measure (RM) is 40,000 rad m**-2 in the rest frame of the quasar. Only 10 mas (a projected distance of 68 pc) from the nucleus the jet absolute values of RM fall to less than 100 rad m**-2.Comment: in press at ApJ Letters, 12 page LaTeX document includes 4 postscript figure

    The basal ganglia in perceptual timing: timing performance in Multiple System Atrophy and Huntington's disease.

    Get PDF
    The timing of perceptual events depends on an anatomically and functionally connected network comprising basal ganglia, cerebellum, pre-frontal cortex and supplementary motor area. Recent studies demonstrate the cerebellum to be involved in absolute, duration-based timing, but not in relative timing based on a regular beat. Conversely, functional involvement of the striatum is observed in relative timing, but its role in absolute timing is unclear. This work tests the specific role of the basal ganglia in the perceptual timing of auditory events. It aims to distinguish the hypothesised unified model of time perception (Teki, Grube, & Griffiths, 2012), in which the striatum is a mandatory component for all timing tasks, from a modular system in which they subserve relative timing, with absolute timing processed by the cerebellum. Test groups comprised individuals with Multiple System Atrophy, a disorder in which similar pathology can produce clinical deficits associated with dysfunction of the cerebellum (MSA-C, n = 8) or striatum (MSA-P, n = 10), and early symptomatic Huntington's disease (HD, n = 14). Individuals with chronic autoimmune peripheral neuropathy (n = 11) acted as controls. Six adaptive tasks were carried out to assess perceptual thresholds for absolute timing through duration discrimination for sub- and supra-second time intervals, and relative timing through the detection of beat-based regularity and irregularity, detection of a delay within an isochronous sequence, and the discrimination of sequences with metrical structure. All three patient groups exhibited impairments in performance in comparison with the control group for all tasks, and severity of impairment was significantly correlated with disease progression. No differences were demonstrated between MSA-C and MSA-P, and the most severe impairments were observed in those with HD. The data support an obligatory role for the basal ganglia in all tested timing tasks, both absolute and relative, as predicted by the unified model. The results are not compatible with models of a brain timing network based upon independent modules
    • …
    corecore