42 research outputs found

    Randomised clinical non-inferiority trial of breathing-based meditation and cognitive processing therapy for symptoms of post-traumatic stress disorder in military veterans

    Get PDF
    Objective Test whether Sudarshan Kriya Yoga (SKY) was non-inferior to cognitive processing therapy (CPT) for treating symptoms of post-traumatic stress disorder (PTSD) among veterans via a parallel randomised controlled non-inferiority trial. Setting Outpatient Veterans Affairs healthcare centre. Participants 85 veterans (75 men, 61% white, mean age 56.9) with symptoms of PTSD participated between October 2015 and March 2020: 59 participants completed the study. Interventions SKY emphasises breathing routines and was delivered in group format in a 15-hour workshop followed by two 1-hour sessions per week for 5 weeks. CPT is an individual psychotherapy which emphasises shifting cognitive appraisals and was delivered in two 1-hour sessions per week for 6 weeks. Measures The primary outcome measure was the PTSD Checklist-Civilian Version (PCL-C). The secondary measures were the Beck Depression Inventory-II (BDI-II) and Positive and Negative Affect Scale (PANAS). Results Mean PCL-C at baseline was 56.5 (±12.6). Intent-to-treat analyses showed that PCL-C scores were reduced at 6 weeks (end of treatment) relative to baseline (SKY, −5.6, d=0.41, n=41: CPT, −6.8, d=0.58, n=44). The between-treatment difference in change scores was within the non-inferiority margin of 10 points (−1.2, 95% CI −5.7 to 3.3), suggesting SKY was not inferior to CPT. SKY was also non-inferior at 1-month (CPT–SKY: −2.1, 95% CI −6.9 to 2.8) and 1-year (CPT–SKY: −1.8, 95% CI −6.6 to 2.9) assessments. SKY was also non-inferior to CPT on the BDI-II and PANAS at end of treatment and 1 month, but SKY was inferior to CPT on both BDI-II and PANAS at 1 year. Dropout rates were similar (SKY, 27%, CPT, 34%: OR=1.36, 95% CI 0.51 to 3.62, p=0.54). Conclusions SKY may be non-inferior to CPT for treating symptoms of PTSD and merits further consideration as a treatment for PTSD

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac

    Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy

    Get PDF
    Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.1668F is a founder variant among Ashkenazi Jews (allele frequency of -.2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function.Genetics of disease, diagnosis and treatmen

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Observations of the "thermal offset' in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada

    No full text
    Temperature profiles in the surface layers of the ground were measured frequently over a 12-month period beginning in May 1984 at seven sites near Mayo, Yukon Territory. Permafrost is present at six of the sites. The mean annual ground temperature profile at each site displays a thermal offset, with measured mean annual tempertures in the active layer up to 1.7°C higher than in permafrost. The data indicate that equilibrium or aggrading permafrost may be present at sites where the mean annual ground surface temperature is above 0°C. -from Author

    Differential bleaching susceptibility among coral taxa and colony sizes, relative to bleaching severity across Australia's Great Barrier Reef and Coral Sea Marine Parks

    Get PDF
    Climate-induced coral bleaching represents the foremost threat to coral assemblages globally, however bleaching susceptibility varies among and within coral taxa. We compared bleaching susceptibility among 10 coral morpho-taxa and two colony size classes relative to reef-scale bleaching severity at 33 reefs across the Great Barrier Reef and Coral Sea Marine Parks in February–March 2020. Colony size and bleaching severity caused the hierarchy of bleaching susceptibility among taxa to change considerably. Notably, massive Porites shifted from being among the least likely taxa to exhibit bleaching, to among the most susceptible as overall bleaching severity increased. Juvenile corals (≤5 cm diameter) were generally more resistant to bleaching, except for Montipora and Pocillopora colonies, which were more likely to bleach than adults (>5 cm). These findings suggest that colony size and reef-scale bleaching severity are important determinants of bleaching susceptibility among taxa and provide insights into possible shifts in the structure of coral assemblages caused by bleaching events

    Productivity of loessal grasslands in the Kluane Lake region, Yukon Territory, and the Beringian 'Production Paradox'

    No full text
    The Beringian 'Production Paradox' is posed by abundant evidence that large ungulates populated unglaciated portions of northwestern North America and adjacent northeast Asia during the late Pleistocene, while botanical data from the same period suggest a poorly productive tundra environment. It is not clear how the large animals sustained themselves, but portions of Beringia, locally in receipt of loess, may have harbored sufficient forage- producing plants to nourish these animals. Loessal soils in the region today are warm and dry in summer, and are often used as rangelands. The loessal hypothesis was examined on grasslands in the Kluane Lake area, southwest Yukon Territory, at sites which have recently received loess blown from the Slims River delta. The biomass and species diversity of grasslands around the lake increase with the quantity of silt in the soil. Likewise, soil fertility indices, including total nitrogen, available nitrogen (NH4), and total carbon, increase with silt content, particularly at sites where the soil surface has been stable for some time, and a 'humified' loess (Ahk) horizon has developed. These results support the hypothesis that sites in receipt of loess may have played a significant role in the vegetative productivity of the Beringian ecosystem
    corecore