34 research outputs found

    ロシアおよびアゼルバイジャンにおけるテンサイ遺伝資源の共同調査収集

    Get PDF
    A collaborative exploration for genus Beta in Russia was conducted with the N. I. Vavilov Research Institute of Plant Industry from Aug. 2 to Aug. 19, 2003. We visited Talish mountains in Azerbaijan near the border of Iran, Caspian seacoast areas in Azerbaijan and Republic of Dagestan which is southern part of Russia federation. As a result, we collected 19 accessions in this exploration : 6 Beta lomatogona, 1 Beta maritime and 6 Beta macrorhiza, 2 table beets (Beta vulgaris ) and 4 sugar beet (Beta vulgaris). The passport data of the collected materials are summarized in Table 2

    Un détecteur pour l’identification des particules chargées dans la région avant de SuperB

    No full text
    In this thesis, we present the conception, the performances studies and the first tests in the Cosmic Muon Telescope situated at SLAC of a new detector for the particle identification in the forward region of the SuperB detector.This detector is based on time-of-flight (TOF) technique. To identify the particles with momentum up to 3 GeV/c and flight base around two meters we need a TOF detector able to measure the time with a precision of about 30 ps. To achieve this goal we have conceived a device producing Cherenkov light in a fused silica (quartz) radiator, by a charged particle, which then detected with very fast photodetectors and dedicated ultrafast electronics. We call it, the DIRC-like TOF detector.For what concern the photodetectors, the HAMAMATSU SL-10 MCP-PMT has been characterized at LAL test bunch and the time resolution of about 37 ps has been measured. The new 16-channel USB WaveCatcher electronics developed by LAL (CNRS/IN2P3) and CEA/IRFU has shown to have a jitter of less than 10 ps. The geometry of the quartz detector has been then carefully studied with Geant4 simulation. Which shows that the best detector geometry allow to reach the time resolution of about 90 ps per photoelectron with at least 10 photoelectrons detected, giving in average the desired 30 ps total time resolution.We have constructed a prototype of such device, using the quartz bars available from the Babar experiment, and we have installed it, in the SLAC Cosmic Ray Telescope. A time resolution of about 70 ps per photoelectron was obtained, in agreement with simulation.This proof-of-principle has convinced the SuperB Collaboration to adopt such a device as the baseline for the SuperB particle identification detector in the forward region. The delicate point which is still opened is the resistance of this detector to the machine background.In this thesis we also present preliminary studies of different types of background and their effect on the performances of the DIRC-like TOF detector. Radiative Bhabha process is by far the dominant source of background. The rate of the background photoelectrons caused mainly by the gammas with energy around 1.4 MeV is estimated to be ~480 kHz/cm^2 which corresponds to 2 C/cm^2 of integrated anode charge in 5 years. The neutron flux thought the DIRC-like TOF front end electronics is ~10^11/cm^2/year. These preliminary results are reassuring.Dans cette thèse nous présentons la conception, l'étude des performances et les premiers tests, effectues au Cosmic Muon Telescope situe au SLAC, d'un nouveau détecteur d'identification des particules émises dans la région ''avant'' du détecteur SuperB.Ce détecteur est base une technique de temps de vol (TOF). Pour identifier les particules avec une impulsion jusqu'à 3GeV/c et une distance de vol de l'ordre de deux mètres nous avons besoin d'un détecteur TOF capable de mesurer le temps avec une précision typique de 30 ps. Pour atteindre cet objectif nous avons conçu un composant pour lequel le passage d'une particule chargée produit de la lumière Cherenkov dans un ''fused silica'' (quartz) radiator qui est ensuite détectée par des photodétecteurs tres rapides et une électronique rapide dédiée. Nous l'appelons détecteur DIRC-like TOF.Les photodétecteurs HAMAMATSU SL-10 MCP-PMT ont été caractérises sur faisceau de test au LAL et la résolution en temps d'environ 37 ps a été mesurée. La nouvelle électronique 16-canaux USB WaveCatcher développée au LAL(CNRS/IN2P3) et CEA/IRFU montre un jitter de moins de 10 ps. La géometrie du détecteur a quartz a été étudiée avec une attention particulière a l'aide d'une simulation Geant4. Celle-ci montre que la meilleure géométrie permet d'atteindre une résolution en temps d'environ 90 ps par photoélectron avec au moins 10 photoélectrons détectés, donnant en moyenne la résolution totale désirée de 30 ps.Nous avons construit un prototype d'un tel composant, utilisant les barres de quartz utilisées pour l'expérience Babar et nous l'avons installe dans le Cosmic Ray Telescope au SLAC. Une résolution en temps d'environ 70~ps par photoélectron a été obtenue, en accord avec la simulation.Cette preuve de principe a convaincu la Collaboration SuperB d'adopter un tel composant comme solution de base pour l'identification des particules émises vers l'avant dans SuperB. Le point délicat, encore ouvert, est celui de la résistance de ce détecteur aux bruits de fond de la machine.Dans cette thèse nous présentons aussi les études préliminaires de différents types de bruit de fond et leur effet sur les performances du détecteur DIRC-like TOF. Le processus Bhabha radiatif est de loin la source dominante de bruit de fond. Le taux de photoélectrons de bruit de fond principalement du aux gammas d'énergie d'environ 1.4 MeV est estimée a ~480 kHz/cm^2 ce qui correspond a 2 C/cm^2 de charge d'anode integrée sur 5 ans. Le flux de neutrons traversant l'électronique de front end du détecteur DIRC-like TOF est estimée a ~10^11/cm^2/year. Ces résultats préliminaires sont rassurants

    Terzina on board NUSES: A pathfinder for EAS Cherenkov Light Detection from space

    No full text
    In this paper we introduce the Terzina telescope as a part of the NUSES space mission. This telescope aims to detect Ultra High Energy Cosmic Rays (UHECRs) through the Cherenkov light emission from the extensive air showers (EAS) that they create in the Earth’s atmosphere. The Cherenkov photons are aligned along the shower axis inside about ∼ 0.2 − 1°, so that they become detectable by Terzina when it points towards the Earth’s limb. A sun-synchronous orbit will allow the telescope to observe only the night side of the Earth’s atmosphere. In this contribution, we focus on the description of the telescope detection goals, geometry, optical design and its photon detection camera composed of Silicon Photo-Multipliers (SiPMs). Moreover, we describe the full Monte Carlo simulation chain developed to estimate Terzina’s performance for UHECR detection. The estimate of the radiation damage and light background rates, the readout electronics and trigger logic are briefly described. Terzina will be able to study the potential for future physics missions devoted to UHECR detection and to UHE neutrino astronomy. It is a pathfinder for missions like POEMMA or future constellations of similar satellites to NUSES

    Un détecteur pour l identification des particules chargées dans la région avant de SuperB

    No full text
    Dans cette thèse nous présentons la conception, l'étude des performances et les premiers tests, effectues au Cosmic Muon Telescope situe au SLAC, d'un nouveau détecteur d'identification des particules émises dans la région ''avant'' du détecteur SuperB.Ce détecteur est base une technique de temps de vol (TOF). Pour identifier les particules avec une impulsion jusqu'à 3GeV/c et une distance de vol de l'ordre de deux mètres nous avons besoin d'un détecteur TOF capable de mesurer le temps avec une précision typique de 30 ps. Pour atteindre cet objectif nous avons conçu un composant pour lequel le passage d'une particule chargée produit de la lumière Cherenkov dans un ''fused silica'' (quartz) radiator qui est ensuite détectée par des photodétecteurs tres rapides et une électronique rapide dédiée. Nous l'appelons détecteur DIRC-like TOF.Les photodétecteurs HAMAMATSU SL-10 MCP-PMT ont été caractérises sur faisceau de test au LAL et la résolution en temps d'environ 37 ps a été mesurée. La nouvelle électronique 16-canaux USB WaveCatcher développée au LAL(CNRS/IN2P3) et CEA/IRFU montre un jitter de moins de 10 ps. La géometrie du détecteur a quartz a été étudiée avec une attention particulière a l'aide d'une simulation Geant4. Celle-ci montre que la meilleure géométrie permet d'atteindre une résolution en temps d'environ 90 ps par photoélectron avec au moins 10 photoélectrons détectés, donnant en moyenne la résolution totale désirée de 30 ps.Nous avons construit un prototype d'un tel composant, utilisant les barres de quartz utilisées pour l'expérience Babar et nous l'avons installe dans le Cosmic Ray Telescope au SLAC. Une résolution en temps d'environ 70~ps par photoélectron a été obtenue, en accord avec la simulation.Cette preuve de principe a convaincu la Collaboration SuperB d'adopter un tel composant comme solution de base pour l'identification des particules émises vers l'avant dans SuperB. Le point délicat, encore ouvert, est celui de la résistance de ce détecteur aux bruits de fond de la machine.Dans cette thèse nous présentons aussi les études préliminaires de différents types de bruit de fond et leur effet sur les performances du détecteur DIRC-like TOF. Le processus Bhabha radiatif est de loin la source dominante de bruit de fond. Le taux de photoélectrons de bruit de fond principalement du aux gammas d'énergie d'environ 1.4 MeV est estimée a ~480 kHz/cm^2 ce qui correspond a 2 C/cm^2 de charge d'anode integrée sur 5 ans. Le flux de neutrons traversant l'électronique de front end du détecteur DIRC-like TOF est estimée a ~10^11/cm^2/year. Ces résultats préliminaires sont rassurants.In this thesis, we present the conception, the performances studies and the first tests in the Cosmic Muon Telescope situated at SLAC of a new detector for the particle identification in the forward region of the SuperB detector.This detector is based on time-of-flight (TOF) technique. To identify the particles with momentum up to 3 GeV/c and flight base around two meters we need a TOF detector able to measure the time with a precision of about 30 ps. To achieve this goal we have conceived a device producing Cherenkov light in a fused silica (quartz) radiator, by a charged particle, which then detected with very fast photodetectors and dedicated ultrafast electronics. We call it, the DIRC-like TOF detector.For what concern the photodetectors, the HAMAMATSU SL-10 MCP-PMT has been characterized at LAL test bunch and the time resolution of about 37 ps has been measured. The new 16-channel USB WaveCatcher electronics developed by LAL (CNRS/IN2P3) and CEA/IRFU has shown to have a jitter of less than 10 ps. The geometry of the quartz detector has been then carefully studied with Geant4 simulation. Which shows that the best detector geometry allow to reach the time resolution of about 90 ps per photoelectron with at least 10 photoelectrons detected, giving in average the desired 30 ps total time resolution.We have constructed a prototype of such device, using the quartz bars available from the Babar experiment, and we have installed it, in the SLAC Cosmic Ray Telescope. A time resolution of about 70 ps per photoelectron was obtained, in agreement with simulation.This proof-of-principle has convinced the SuperB Collaboration to adopt such a device as the baseline for the SuperB particle identification detector in the forward region. The delicate point which is still opened is the resistance of this detector to the machine background.In this thesis we also present preliminary studies of different types of background and their effect on the performances of the DIRC-like TOF detector. Radiative Bhabha process is by far the dominant source of background. The rate of the background photoelectrons caused mainly by the gammas with energy around 1.4 MeV is estimated to be ~480 kHz/cm^2 which corresponds to 2 C/cm^2 of integrated anode charge in 5 years. The neutron flux thought the DIRC-like TOF front end electronics is ~10^11/cm^2/year. These preliminary results are reassuring.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    A planar picoamperemeter based on a superconducting quantum interferometer

    No full text
    An optimized picoamperemeter based on a superconducting quantum interferometer device (SQUID) for a metal cold-electron bolometer is fabricated and experimentally studied. The intrinsic SQUID current noise caused by the input coil is estimated to be less than 1 pA/Hz@1/2. Owing to the application of modulation electronics, current sensitivity in the input coil reaches 5 pA/Hz@1/2 in the frequency band from 10 Hz to 10 kHz

    A planar picoamperemeter based on a superconducting quantum interferometer

    Get PDF
    An optimized picoamperemeter based on a superconducting quantum interferometer device (SQUID) for a metal cold-electron bolometer is fabricated and experimentally studied. The intrinsic SQUID current noise caused by the input coil is estimated to be less than 1 pA/Hz@1/2. Owing to the application of modulation electronics, current sensitivity in the input coil reaches 5 pA/Hz@1/2 in the frequency band from 10 Hz to 10 kHz

    Cold-Electron Bolometers with SQUID Readout for OLIMPO Balloon Telescope

    No full text
    The OLIMPO experiment is a 2.6 m balloon-borne telescope, aimed at measuring the Sunyaev-Zeldovich effect in clusters of Galaxies. OLIMPO will carry out surveys in four frequency bands centered at 140, 220, 410 and 540 GHz. The detector system consists of four bolometer arrays and incorporates new detector technologies that are potential candidates for future space missions. One of these technologies is the Capacitively Coupled Cold-Electron Bolometer (CEB) with SQUID readout. The SQUID readout has been already developed for TES bolometers with typical sensitivity of 1 pA/Hz1/2. The goal is to achieve noise-equivalent power (NEP) of the CEB with standard SQUID readout (without additional transformer) less than photon noise.The CEB is a planar antenna-coupled superconducting detector with high sensitivity and high dynamic range. To achieve noise matching with SQUID for the estimated in-flight optical power load, a parallel array of Cold-Electron Bolometers has to be used. This array can be easy realized in proposed arrangement of OLIMPO receiving system with four coplanar lines for each channel. Two CEBs can be inserted in each coplanar line and combined in parallel would give eight parallel CEBs for each channel.To increase efficiency of CEB for current readout, an optimal configuration of CEB with capacitively coupled SIN junction and Andreev SN contact has been used. In this configuration the strong electron cooling and currnt response for incoming signal are realized by one single junction. The volume of normal metal is partly squeezed due to proximity effect of a superconducting electrode from the Andreev contact that increase efficiency of the electron cooling. Simulations show that photon noise level can be achieved at 300 mK for the parallel array of eight CEBs for all frequency ranges with the estimated in-flight optical power load for OLIMPO

    Cold-Electron Bolometers with SQUID Readout for OLIMPO Balloon Telescope

    No full text
    The OLIMPO experiment is a 2.6 m balloon-borne telescope, aimed at measuring the Sunyaev-Zeldovich effect in clusters of Galaxies. OLIMPO will carry out surveys in four frequency bands centered at 140, 220, 410 and 540 GHz. The detector system consists of four bolometer arrays and incorporates new detector technologies that are potential candidates for future space missions. One of these technologies is the Capacitively Coupled Cold-Electron Bolometer (CEB) with SQUID readout. The SQUID readout has been already developed for TES bolometers with typical sensitivity of 1 pA/Hz1/2. The goal is to achieve noise-equivalent power (NEP) of the CEB with standard SQUID readout (without additional transformer) less than photon noise.The CEB is a planar antenna-coupled superconducting detector with high sensitivity and high dynamic range. To achieve noise matching with SQUID for the estimated in-flight optical power load, a parallel array of Cold-Electron Bolometers has to be used. This array can be easy realized in proposed arrangement of OLIMPO receiving system with four coplanar lines for each channel. Two CEBs can be inserted in each coplanar line and combined in parallel would give eight parallel CEBs for each channel.To increase efficiency of CEB for current readout, an optimal configuration of CEB with capacitively coupled SIN junction and Andreev SN contact has been used. In this configuration the strong electron cooling and currnt response for incoming signal are realized by one single junction. The volume of normal metal is partly squeezed due to proximity effect of a superconducting electrode from the Andreev contact that increase efficiency of the electron cooling. Simulations show that photon noise level can be achieved at 300 mK for the parallel array of eight CEBs for all frequency ranges with the estimated in-flight optical power load for OLIMPO

    The SE-CpFM Detector for the Crystal-Assisted Extraction at CERN-SPS

    No full text
    International audienceThe UA9 experiment at CERN-SPS investigates the manipulation of high energy hadron beams using bent silicon crystals since 2009. Monitoring and characterization of channeled beams in the high energy accelerators environment ideally requires in-vacuum and radiation hard detectors. For this purpose the Cherenkov detector for proton Flux Measurement (CpFM) was designed and developed. It features a fused silica bar in the beam pipe vacuum which intercepts charged particles and generates Cherenkov light. In this contribution the SE-CpFM (Slow Extraction CpFM) detector is described in detail. It has been installed in early 2016 in the TT20 extraction line of SPS to study the feasibility of the crystal-assisted extraction from the SPS. Before the installation the detector has been fully characterized in 2015, during the UA9 data taking in the H8-SPS extraction line with 180 GeV pions. The single particle detection efficiency and the photoelectron yield per proton have been estimated and are shown in this contribution

    The Cherenkov Detector for Proton Flux Measurement (CpFM) in the UA9 Experiment

    No full text
    International audienceThe UA9 experiment at the CERN SPS investigates the possibility to use bent crystals to steer particles in high energy accelerators. In this framework the CpFM have been developed to measure the beam particle flux in different experimental situations. Thin movable fused-silica bars installed in the SPS primary vacuum and intercepting the incoming particles are used to radiate Cherenkov light. The light signal is collected outside the beam pipe through a quartz optical window by radiation hard PMTs. The PMT signal is readout by the WaveCatcher acquisition board, which provides count rate as well as waveform information over a configurable time window. A bundle of optical fibers can be used to transport the light signal far from the beam pipe, allowing to reduce the radiation dose to the PMT. A first version of the CpFM has been successfully commissioned during the data taking runs of the UA9 Experiment in 2015, while a second version has been installed in the TT20 extraction line of the SPS in 2016. In this contribution the design choices will be presented and the final version of the detector will be described in detail
    corecore