3,012 research outputs found

    Electron scattering states at solid surfaces calculated with realistic potentials

    Full text link
    Scattering states with LEED asymptotics are calculated for a general non-muffin tin potential, as e.g. for a pseudopotential with a suitable barrier and image potential part. The latter applies especially to the case of low lying conduction bands. The wave function is described with a reciprocal lattice representation parallel to the surface and a discretization of the real space perpendicular to the surface. The Schroedinger equation leads to a system of linear one-dimensional equations. The asymptotic boundary value problem is confined via the quantum transmitting boundary method to a finite interval. The solutions are obtained basing on a multigrid technique which yields a fast and reliable algorithm. The influence of the boundary conditions, the accuracy and the rate of convergence with several solvers are discussed. The resulting charge densities are investigated.Comment: 5 pages, 4 figures, copyright and acknowledgment added, typos etc. correcte

    Chromosome mapping: radiation hybrid data and stochastic spin models

    Full text link
    This work approaches human chromosome mapping by developing algorithms for ordering markers associated with radiation hybrid data. Motivated by recent work of Boehnke et al. [1], we formulate the ordering problem by developing stochastic spin models to search for minimum-break marker configurations. As a particular application, the methods developed are applied to 14 human chromosome-21 markers tested by Cox et al. [2]. The methods generate configurations consistent with the best found by others. Additionally, we find that the set of low-lying configurations is described by a Markov-like ordering probability distribution. The distribution displays cluster correlations reflecting closely linked loci.Comment: 26 Pages, uuencoded LaTex, Submitted to Phys. Rev. E, [email protected], [email protected]

    Billiard Systems in Three Dimensions: The Boundary Integral Equation and the Trace Formula

    Full text link
    We derive semiclassical contributions of periodic orbits from a boundary integral equation for three-dimensional billiard systems. We use an iterative method that keeps track of the composition of the stability matrix and the Maslov index as an orbit is traversed. Results are given for isolated periodic orbits and rotationally invariant families of periodic orbits in axially symmetric billiard systems. A practical method for determining the stability matrix and the Maslov index is described.Comment: LaTeX, 19 page

    The ethics of inherent trust in care robots for the elderly

    Get PDF
    The way elderly care is delivered is changing. Attempts are being made to accommodate the increasing number of elderly, and the decline in the number of people available to care for them, with care robots. This change introduces ethical issues into robotics and healthcare. The two-part study (heuristic evaluation and survey) reported here examines a phenomenon which is a result of that change. The phenomenon rises out of a contradiction. All but 2 (who were undecided) of the 12 elderly survey respondents, out of the total of 102 respondents, wanted to be able to change how the presented care robot made decisions and 7 of those 12 elderly wanted to be able to examine its decision making process so as to ensure the care provided is personalized. However, at the same time, 34% of the elderly participants said they were willing to trust the care robot inherently, compared to only 16% of the participants who were under fifty. Additionally, 66% of the elderly respondents said they were very likely or likely to accept and use such a care robot in their everyday lives. The contradiction of inherent trust and simultaneous wariness about control gives rise to the phenomenon: elderly in need want control over their care to ensure it is personalized, but many may desperately take any help they can get. The possible causes, and ethical implications, of this phenomenon are the focus of this paper

    Testing QCD with Hypothetical Tau Leptons

    Get PDF
    We construct new tests of perturbative QCD by considering a hypothetical tau lepton of arbitrary mass, which decays hadronically through the electromagnetic current. We can explicitly compute its hadronic width ratio directly as an integral over the e^+ e^- annihilation cross section ratio, R_{e^+e^-}. Furthermore, we can design a set of commensurate scale relations and perturbative QCD tests by varying the weight function away from the form associated with the V-A decay of the physical tau. This method allows the wide range of the R_{e^+e^-} data to be used as a probe of perturbative QCD.Comment: 4 pages, 4 figure

    Flow cytometric maturity score as a novel prognostic parameter in patients with acute myeloid leukemia

    Get PDF
    The European LeukemiaNet (ELN) classification is widely accepted for risk stratification of patients with acute myeloid leukemia (AML). In order to establish immunophenotypic features that predict prognosis, the expression of single AML blast cell antigens has been evaluated with partly conflicting results; however, the influence of immunophenotypic blast maturity is largely unknown. In our study, 300 AML patients diagnosed at our institution between January 2003 and April 2012 were analyzed. A flow cytometric maturity score was developed in order to distinguish "mature" AML (AML-ma) from "immature" AML (AML-im) by quantitative expression levels of early progenitor cell antigens (CD34, CD117, and TdT). AML-ma showed significantly longer relapse-free survival (RFS) and overall survival (OS) than AML-im (p < 0.001). Interestingly, statistically significant differences in RFS and OS were maintained within the "intermediate-risk" group according to ELN (RFS, 7.0 years (AML-ma) vs. 3.3 years (AML-im); p = 0.002; OS, 5.1 years (AML-ma) vs. 3.0 years (AML-im); p = 0.022). Our novel flow cytometric score easily determines AML blast maturity and can predict clinical outcome. It remains to be clarified whether these results simply reflect an accumulation of favorable molecular phenotypes in the AML-ma subgroup or whether they rely on biological differences such as a higher proportion of leukemia stem cells and/or a higher degree of genetic instability within the AML-im subgroup

    Quantum transport and momentum conserving dephasing

    Full text link
    We study numerically the influence of momentum-conserving dephasing on the transport in a disordered chain of scatterers. Loss of phase memory is caused by coupling the transport channels to dephasing reservoirs. In contrast to previously used models, the dephasing reservoirs are linked to the transport channels between the scatterers, and momentum conserving dephasing can be investigated. Our setup provides a model for nanosystems exhibiting conductance quantization at higher temperatures in spite of the presence of phononic interaction. We are able to confirm numerically some theoretical predictions.Comment: 7 pages, 4 figure

    Ultrasound-evoked immediate early gene expression in the brainstem of the Chinese torrent frog, Odorrana tormota

    Get PDF
    The concave-eared torrent frog, Odorrana tormota, has evolved the extraordinary ability to communicate ultrasonically (i.e., using frequencies > 20 kHz), and electrophysiological experiments have demonstrated that neurons in the frog’s midbrain (torus semicircularis) respond to frequencies up to 34 kHz. However, at this time, it is unclear which region(s) of the torus and what other brainstem nuclei are involved in the detection of ultrasound. To gain insight into the anatomical substrate of ultrasound detection, we mapped expression of the activity-dependent gene, egr-1, in the brain in response to a full-spectrum mating call, a filtered, ultrasound-only call, and no sound. We found that the ultrasound-only call elicited egr-1 expression in the superior olivary and principal nucleus of the torus semicircularis. In sampled areas of the principal nucleus, the ultrasound-only call tended to evoke higher egr-1 expression than the full-spectrum call and, in the center of the nucleus, induced significantly higher egr-1 levels than the no-sound control. In the superior olivary nucleus, the full-spectrum and ultrasound-only calls evoked similar levels of expression that were significantly greater than the control, and egr-1 induction in the laminar nucleus showed no evidence of acoustic modulation. These data suggest that the sampled areas of the principal nucleus are among the regions sensitive to ultrasound in this species

    A Missense Variant in the Bardet-Biedl Syndrome 2 Gene (BBS2) Leads to a Novel Syndromic Retinal Degeneration in the Shetland Sheepdog

    Get PDF
    Canine progressive retinal atrophy (PRA) describes a group of hereditary diseases characterized by photoreceptor cell death in the retina, leading to visual impairment. Despite the identification of multiple PRA-causing variants, extensive heterogeneity of PRA is observed across and within dog breeds, with many still genetically unsolved. This study sought to elucidate the causal variant for a distinct form of PRA in the Shetland sheepdog, using a whole-genome sequencing approach. Filtering variants from a single PRA-affected Shetland sheepdog genome compared to 176 genomes of other breeds identified a single nucleotide variant in exon 11 of the Bardet–Biedl syndrome-2 gene (BBS2) (c.1222G>C; p.Ala408Pro). Genotyping 1386 canids of 155 dog breeds, 15 cross breeds and 8 wolves indicated the c.1222G>C variant was only segregated within Shetland sheepdogs. Out of 505 Shetland sheepdogs, seven were homozygous for the variant. Clinical history and photographs for three homozygotes indicated the presence of a novel phenotype. In addition to PRA, additional clinical features in homozygous dogs support the discovery of a novel syndromic PRA in the breed. The development and utilization of a diagnostic DNA test aim to prevent the mutation from becoming more prevalent in the breed
    • 

    corecore