3,315 research outputs found

    Europe 1992: Toward a Single Energy Market

    Get PDF

    Chromosome mapping: radiation hybrid data and stochastic spin models

    Full text link
    This work approaches human chromosome mapping by developing algorithms for ordering markers associated with radiation hybrid data. Motivated by recent work of Boehnke et al. [1], we formulate the ordering problem by developing stochastic spin models to search for minimum-break marker configurations. As a particular application, the methods developed are applied to 14 human chromosome-21 markers tested by Cox et al. [2]. The methods generate configurations consistent with the best found by others. Additionally, we find that the set of low-lying configurations is described by a Markov-like ordering probability distribution. The distribution displays cluster correlations reflecting closely linked loci.Comment: 26 Pages, uuencoded LaTex, Submitted to Phys. Rev. E, [email protected], [email protected]

    Billiard Systems in Three Dimensions: The Boundary Integral Equation and the Trace Formula

    Full text link
    We derive semiclassical contributions of periodic orbits from a boundary integral equation for three-dimensional billiard systems. We use an iterative method that keeps track of the composition of the stability matrix and the Maslov index as an orbit is traversed. Results are given for isolated periodic orbits and rotationally invariant families of periodic orbits in axially symmetric billiard systems. A practical method for determining the stability matrix and the Maslov index is described.Comment: LaTeX, 19 page

    The ethics of inherent trust in care robots for the elderly

    Get PDF
    The way elderly care is delivered is changing. Attempts are being made to accommodate the increasing number of elderly, and the decline in the number of people available to care for them, with care robots. This change introduces ethical issues into robotics and healthcare. The two-part study (heuristic evaluation and survey) reported here examines a phenomenon which is a result of that change. The phenomenon rises out of a contradiction. All but 2 (who were undecided) of the 12 elderly survey respondents, out of the total of 102 respondents, wanted to be able to change how the presented care robot made decisions and 7 of those 12 elderly wanted to be able to examine its decision making process so as to ensure the care provided is personalized. However, at the same time, 34% of the elderly participants said they were willing to trust the care robot inherently, compared to only 16% of the participants who were under fifty. Additionally, 66% of the elderly respondents said they were very likely or likely to accept and use such a care robot in their everyday lives. The contradiction of inherent trust and simultaneous wariness about control gives rise to the phenomenon: elderly in need want control over their care to ensure it is personalized, but many may desperately take any help they can get. The possible causes, and ethical implications, of this phenomenon are the focus of this paper

    Effect of a lattice upon an interacting system of electrons: Breakdown of scaling and decay of persistent currents

    Full text link
    For an interacting system of N electrons, we study the conditions under which a lattice model of size L with nearest neighbor hopping t and U/r Coulomb repulsion has the same ground state as a continuum model. For a fixed value of N, one gets identical results when the inter-electron spacing to the Bohr radius ratio r_s < r_s^*. Above r_s^*, the persistent current created by an enclosed flux begins to decay and r_s ceases to be the scaling parameter. Three criteria giving similar r_s^* are proposed and checked using square lattices.Comment: 7 pages, 5 postscript figure

    Michelson interferometer with diffractively-coupled arm resonators in second-order Littrow configuration

    Full text link
    Michelson-type laser-interferometric gravitational-wave (GW) observatories employ very high light powers as well as transmissively- coupled Fabry-Perot arm resonators in order to realize high measurement sensitivities. Due to the absorption in the transmissive optics, high powers lead to thermal lensing and hence to thermal distortions of the laser beam profile, which sets a limit on the maximal light power employable in GW observatories. Here, we propose and realize a Michelson-type laser interferometer with arm resonators whose coupling components are all-reflective second-order Littrow gratings. In principle such gratings allow high finesse values of the resonators but avoid bulk transmission of the laser light and thus the corresponding thermal beam distortion. The gratings used have three diffraction orders, which leads to the creation of a second signal port. We theoretically analyze the signal response of the proposed topology and show that it is equivalent to a conventional Michelson-type interferometer. In our proof-of-principle experiment we generated phase-modulation signals inside the arm resonators and detected them simultaneously at the two signal ports. The sum signal was shown to be equivalent to a single-output-port Michelson interferometer with transmissively-coupled arm cavities, taking into account optical loss. The proposed and demonstrated topology is a possible approach for future all-reflective GW observatory designs
    corecore