3,048 research outputs found
t(6;20)(q15;q11.2) BACH2/BCL2L1
Review on t(6;20)(q15;q11.2) BACH2/BCL2L1, with data on clinics, and the genes involved
Towards Collaborative Conceptual Exploration
In domains with high knowledge distribution a natural objective is to create
principle foundations for collaborative interactive learning environments. We
present a first mathematical characterization of a collaborative learning
group, a consortium, based on closure systems of attribute sets and the
well-known attribute exploration algorithm from formal concept analysis. To
this end, we introduce (weak) local experts for subdomains of a given knowledge
domain. These entities are able to refute and potentially accept a given
(implicational) query for some closure system that is a restriction of the
whole domain. On this we build up a consortial expert and show first insights
about the ability of such an expert to answer queries. Furthermore, we depict
techniques on how to cope with falsely accepted implications and on combining
counterexamples. Using notions from combinatorial design theory we further
expand those insights as far as providing first results on the decidability
problem if a given consortium is able to explore some target domain.
Applications in conceptual knowledge acquisition as well as in collaborative
interactive ontology learning are at hand.Comment: 15 pages, 2 figure
Effects of interaction on an adiabatic quantum electron pump
We study the effects of inter-electron interactions on the charge pumped
through an adiabatic quantum electron pump. The pumping is through a system of
barriers, whose heights are deformed adiabatically. (Weak) interaction effects
are introduced through a renormalisation group flow of the scattering matrices
and the pumped charge is shown to {\it always} approach a quantised value at
low temperatures or long length scales. The maximum value of the pumped charge
is set by the number of barriers and is given by . The
correlation between the transmission and the charge pumped is studied by seeing
how much of the transmission is enclosed by the pumping contour. The (integer)
value of the pumped charge at low temperatures is determined by the number of
transmission maxima enclosed by the pumping contour. The dissipation at finite
temperatures leading to the non-quantised values of the pumped charge scales as
a power law with the temperature (), or with
the system size (), where is a
measure of the interactions and vanishes at . For a double
barrier system, our result agrees with the quantisation of pumped charge seen
in Luttinger liquids.Comment: 9 pages, 9 figures, better quality figures available on request from
author
Recommended from our members
Burn wound classification model using spatial frequency-domain imaging and machine learning.
Accurate assessment of burn severity is critical for wound care and the course of treatment. Delays in classification translate to delays in burn management, increasing the risk of scarring and infection. To this end, numerous imaging techniques have been used to examine tissue properties to infer burn severity. Spatial frequency-domain imaging (SFDI) has also been used to characterize burns based on the relationships between histologic observations and changes in tissue properties. Recently, machine learning has been used to classify burns by combining optical features from multispectral or hyperspectral imaging. Rather than employ models of light propagation to deduce tissue optical properties, we investigated the feasibility of using SFDI reflectance data at multiple spatial frequencies, with a support vector machine (SVM) classifier, to predict severity in a porcine model of graded burns. Calibrated reflectance images were collected using SFDI at eight wavelengths (471 to 851 nm) and five spatial frequencies (0 to 0.2 mm - 1). Three models were built from subsets of this initial dataset. The first subset included data taken at all wavelengths with the planar (0 mm - 1) spatial frequency, the second comprised data at all wavelengths and spatial frequencies, and the third used all collected data at values relative to unburned tissue. These data subsets were used to train and test cubic SVM models, and compared against burn status 28 days after injury. Model accuracy was established through leave-one-out cross-validation testing. The model based on images obtained at all wavelengths and spatial frequencies predicted burn severity at 24 h with 92.5% accuracy. The model composed of all values relative to unburned skin was 94.4% accurate. By comparison, the model that employed only planar illumination was 88.8% accurate. This investigation suggests that the combination of SFDI with machine learning has potential for accurately predicting burn severity
Demonstration of 3-port grating phase relations
We experimentally demonstrate the phase relations of 3-port gratings by
investigating 3-port coupled Fabry-Perot cavities. Two different gratings which
have the same 1st order diffraction efficiency but differ substantially in
their 2nd order diffraction efficiency have been designed and manufactured.
Using the gratings as couplers to Fabry-Perot cavities we could validate the
results of an earlier theoretical description of the phases at a three port
grating
Chromosome mapping: radiation hybrid data and stochastic spin models
This work approaches human chromosome mapping by developing algorithms for
ordering markers associated with radiation hybrid data. Motivated by recent
work of Boehnke et al. [1], we formulate the ordering problem by developing
stochastic spin models to search for minimum-break marker configurations. As a
particular application, the methods developed are applied to 14 human
chromosome-21 markers tested by Cox et al. [2]. The methods generate
configurations consistent with the best found by others. Additionally, we find
that the set of low-lying configurations is described by a Markov-like ordering
probability distribution. The distribution displays cluster correlations
reflecting closely linked loci.Comment: 26 Pages, uuencoded LaTex, Submitted to Phys. Rev. E,
[email protected], [email protected]
Diffractive Optics for Gravitational Wave Detectors
All-reflective interferometry based on nano-structured diffraction gratings
offers new possibilities for gravitational wave detection. We investigate an
all-reflective Fabry-Perot interferometer concept in 2nd order Littrow mount.
The input-output relations for such a resonator are derived treating the
grating coupler by means of a scattering matrix formalism. A low loss
dielectric reflection grating has been designed and manufactured to test the
properties of such a grating cavity
Experimental demonstration of a suspended diffractively coupled optical cavity
All-reflective optical systems are under consideration for future gravitational wave detector topologies. One approach in proposed designs is to use diffraction gratings as input couplers for Fabry–Perot cavities. We present an experimental demonstration of a fully suspended diffractively coupled cavity and investigate the use of conventional Pound–Drever–Hall length sensing and control techniques to maintain the required operating condition
Billiard Systems in Three Dimensions: The Boundary Integral Equation and the Trace Formula
We derive semiclassical contributions of periodic orbits from a boundary
integral equation for three-dimensional billiard systems. We use an iterative
method that keeps track of the composition of the stability matrix and the
Maslov index as an orbit is traversed. Results are given for isolated periodic
orbits and rotationally invariant families of periodic orbits in axially
symmetric billiard systems. A practical method for determining the stability
matrix and the Maslov index is described.Comment: LaTeX, 19 page
- …