3,447 research outputs found

    Interaction of short x-ray pulses with biomolecules

    Get PDF

    Electron scattering states at solid surfaces calculated with realistic potentials

    Full text link
    Scattering states with LEED asymptotics are calculated for a general non-muffin tin potential, as e.g. for a pseudopotential with a suitable barrier and image potential part. The latter applies especially to the case of low lying conduction bands. The wave function is described with a reciprocal lattice representation parallel to the surface and a discretization of the real space perpendicular to the surface. The Schroedinger equation leads to a system of linear one-dimensional equations. The asymptotic boundary value problem is confined via the quantum transmitting boundary method to a finite interval. The solutions are obtained basing on a multigrid technique which yields a fast and reliable algorithm. The influence of the boundary conditions, the accuracy and the rate of convergence with several solvers are discussed. The resulting charge densities are investigated.Comment: 5 pages, 4 figures, copyright and acknowledgment added, typos etc. correcte

    Effects of interaction on an adiabatic quantum electron pump

    Full text link
    We study the effects of inter-electron interactions on the charge pumped through an adiabatic quantum electron pump. The pumping is through a system of barriers, whose heights are deformed adiabatically. (Weak) interaction effects are introduced through a renormalisation group flow of the scattering matrices and the pumped charge is shown to {\it always} approach a quantised value at low temperatures or long length scales. The maximum value of the pumped charge is set by the number of barriers and is given by Qmax=nb1Q_{\rm max} = n_b -1. The correlation between the transmission and the charge pumped is studied by seeing how much of the transmission is enclosed by the pumping contour. The (integer) value of the pumped charge at low temperatures is determined by the number of transmission maxima enclosed by the pumping contour. The dissipation at finite temperatures leading to the non-quantised values of the pumped charge scales as a power law with the temperature (QQintT2αQ-Q_{\rm int} \propto T^{2\alpha}), or with the system size (QQintLs2αQ-Q_{\rm int} \propto L_s^{-2\alpha}), where α\alpha is a measure of the interactions and vanishes at T=0 (Ls=)T=0 ~(L_s=\infty). For a double barrier system, our result agrees with the quantisation of pumped charge seen in Luttinger liquids.Comment: 9 pages, 9 figures, better quality figures available on request from author

    Heat transfer between a plane surface and a pulsating, perpendicularly impinging air jet

    Get PDF
    Call number: LD2668 .T4 1959 B8

    Deformation and magnetic fabrics in ductile shear zones: A review

    Get PDF
    The Anisotropy of Magnetic Susceptibility (AMS) is a well-established petrofabric tool for indicating relative strain and microstructural character and has been validated on various rock types and different structural settings. The magnetic susceptibility of a rock (K) depends primarily on the nature and abundance of magnetic minerals. The physical arrangement and lattice-preferred orientation of these magnetic minerals give rise to magnetic anisotropy. The AMS scalar parameters most commonly used to constrain strain include the corrected degree of anisotropy (P'> 1), a proxy for fabric intensity, and the shape factor (- 1 ≤ T≤ + 1), an indicator of the magnetic fabric symmetry (prolate vs. oblate).A number of studies have shown that a positive correlation generally exists between P' and strain. Thus, the AMS shows a great potential as a tool for examining deformation in geologic structures characterized by large strain gradients such as shear zones. However, a number of caveats exist: (i) The increase of P' with strain cannot be solely attributed to deformation because P' also increases with K regardless of deformation; (ii) Strain across shear zones is typically heterogeneous and is often localized in units of different lithology, thus making the separation of the lithological and strain controls on AMS difficult; also, deformation is commonly accompanied by mineral segregation or fluid-rock interaction that induces changes in magnetic mineralogy; (iii) Even if the undeformed lithology was uniform across a shear zone, variations in strain rate or temperature may result in different deformation mechanisms; hence, the relationship between P' and strain depends strongly on both the mineral carriers of AMS and on deformation mechanisms; and (iv) The AMS is unable to resolve composite fabrics, such as those resulting from S-C structures, where minerals on the C and S planes, respectively, contribute to AMS

    Chromosome mapping: radiation hybrid data and stochastic spin models

    Full text link
    This work approaches human chromosome mapping by developing algorithms for ordering markers associated with radiation hybrid data. Motivated by recent work of Boehnke et al. [1], we formulate the ordering problem by developing stochastic spin models to search for minimum-break marker configurations. As a particular application, the methods developed are applied to 14 human chromosome-21 markers tested by Cox et al. [2]. The methods generate configurations consistent with the best found by others. Additionally, we find that the set of low-lying configurations is described by a Markov-like ordering probability distribution. The distribution displays cluster correlations reflecting closely linked loci.Comment: 26 Pages, uuencoded LaTex, Submitted to Phys. Rev. E, [email protected], [email protected]
    corecore