135 research outputs found

    Faglig mentorordning på KU – at facilitere de studerendes valgprocesser

    Get PDF

    Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from <em>Klebsiella pneumoniae</em>

    Get PDF
    Plasmids are a highly effective means with which genetic traits that influence human health, such as virulence and antibiotic resistance, are disseminated through bacterial populations. The IncX-family is a hitherto sparsely populated group of plasmids that are able to thrive within Enterobacteriaceae. In this study, a replicon-centric screening method was used to locate strains from wastewater sludge containing plasmids belonging to the IncX-family. A transposon aided plasmid capture method was then employed to transport IncX-plasmids from their original hosts (and co-hosted plasmids) into a laboratory strain (Escherichia coli Genehogs®) for further study. The nucleotide sequences of the three newly isolated IncX-plasmids (pLN126_33, pMO17_54, pMO440_54) and the hitherto un-sequenced type-plasmid R485 revealed a remarkable occurrence of whole or partial gene cassettes that promote biofilm-formation in Klebsiella pneumonia or E. coli, in all four instances. Two of the plasmids (R485 and pLN126_33) were shown to directly induce biofilm formation in a crystal violet retention assay in E. coli. Sequence comparison revealed that all plasmid-borne forms of the type 3 fimbriae encoding gene cassette mrkABCDF were variations of a composite transposon Tn6011 first described in the E. coli IncX plasmid pOLA52. In conclusion, IncX-plasmids isolated from Enterobacteriaceae over almost 40 years and on three different continents have all been shown to carry a type 3 fimbriae gene cassette mrkABCDF stemming from pathogenic K. pneumoniae. Apart from contributing general knowledge about IncX-plasmids, this study also suggests an apparent ubiquity of a mobile form of an important virulence factor and is an illuminating example of the recruitment, evolution and dissemination of genetic traits through plasmid-mediated horizontal gene transfer

    Draft genome assembly of two <i>Pseudoclavibacter helvolus</i> strains, G8 and W3, isolated from slaughterhouse environments

    Get PDF
    We report the draft genome sequences of two Pseudoclavibacter helvolus strains. Strain G8 was isolated from a meat chopper and strain W3 isolated from the wall of a small slaughterhouse in Denmark. The two annotated genomes are 3.91 Mb and 4.00 Mb in size, respectively

    Draft genome sequences of two <i>Kocuria</i> isolates, K. <i>salsicia</i> G1 and K. <i>rhizophila</i> G2, isolated from a slaughterhouse in Denmark

    No full text
    We report here the draft genome sequences of Kocuria salsicia G1 and Kocuria rhizophila G2, which were isolated from a meat chopper at a small slaughterhouse in Denmark. The two annotated genomes are 2.99 Mb and 2.88 Mb in size, respectively

    Genome sequence of <i>Arthrobacter antarcticus</i> strain W2, isolated from a slaughterhouse

    Get PDF
    We report the draft genome sequence of Arthrobacter antarcticus strain W2, which was isolated from a wall of a small slaughterhouse in Denmark. The 4.43-Mb genome sequence was assembled into 170 contigs

    Genome sequence of <i>Kocuria palustris</i> strain W4

    Get PDF
    We report the 3.09 Mb draft genome sequence of Kocuria palustris W4, isolated from a slaughterhouse in Denmark

    Genome sequence of <i>Kocuria varians</i> G6 ssolated from a slaughterhouse in Denmark

    Get PDF
    We report here the first draft genome sequence of Kocuria varians G6, which was isolated from a meat chopper at a small slaughterhouse in Denmark. The 2.90-Mb genome sequence consists of 95 contigs and contains 2,518 predicted protein-coding genes

    Genome sequence of <i>Psychrobacter cibarius</i> strain W1

    Get PDF
    Here, we report the draft genome sequence of Psychrobacter cibarius strain W1, which was isolated at a slaughterhouse in Denmark. The 3.63-Mb genome sequence was assembled into 241 contigs

    Synergistic interactions in microbial biofilms facilitate the establishment of opportunistic pathogenic fungi in household dishwashers

    Get PDF
    Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic fourspecies bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis, the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health
    • …
    corecore