134 research outputs found

    Measurements of the ClO radical vibrational band intensity and the ClO + ClO + M reaction product

    Get PDF
    There is considerable interest in the kinetics and concentrations of free radicals in the stratosphere. Chlorine monoxide is a critically important radical because of its role in catalytic cycles for ozone depletion. Depletion occurs under a wide variety of conditions including the Antarctic spring when unusual mechanisms such as the BrO sub x/ClO sub x, ClO dimer (Cl sub 2 O sub 2), and ClO sub x/HO sub x cycles are suggested to operate. Infrared spectroscopy is one of the methods used to measure ClO in the stratosphere (Menzies 1979 and 1983; Mumma et al., 1983). To aid the quantification of such infrared measurements, researchers measured the ClO ground state fundamental band intensity

    CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    Get PDF
    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendation

    Temperature dependence of UV absorption cross sections and atmospheric implications of several alkyl iodides

    Get PDF
    The ultraviolet absorption spectra of a number of alkyl iodides which have been found in the troposphere, CH_3I, C_2H_5I, CH_3CH_2CH_2I, CH_3CHICH_3, CH_2I_2, and CH2_ClI, have been measured over the wavelength range 200–380 nm and at temperatures between 298 and 210 K. The absorption spectra of the monoiodides C_H3I, C_2H_5I, CH_3CH_2CH_2I, and CH_3CHICH_3 are nearly identical in shape and magnitude and consist of single broad bands centered near 260 nm. The addition of a chlorine atom in CH_2ClI shifts its spectrum to longer wavelengths (σ_(max) at 270 nm). The spectrum of CH_2I_2 is further red‐shifted, reaching a maximum of 3.85×10^(−18) cm^2 molecule^(−1) at 288 nm and exhibiting strong absorption in the solar actinic region, λ>290 nm. Atmospheric photolysis rate constants, J values, have been calculated assuming quantum efficiencies of unity for different solar zenith angles as a function of altitude using the newly measured cross sections. Surface photolysis rate constants, calculated from the absorption cross sections measured at 298 K, range from 3×10^(−6) s^(−1) for CH)3I to 5×10^(−3) s^(−1) for CH)2I)2 at a solar zenith angle of 40°

    NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    Get PDF
    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively

    UV Absorption Cross Sections of Nitrous Oxide (N2O) and Carbon Tetrachloride (CCl4) Between 210 and 350 K and the Atmospheric Implications

    Get PDF
    Absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm) at 27 temperatures in the range 210-350 K. In addition, UV absorption spectra of CCl4 are reported between 200-235 nm as a function of temperature (225-350 K). The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5-7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in 37 atmospheric model calculations is presented

    Evaluating Phonological Processing Skills in Children With Prelingual Deafness Who Use Cochlear Implants

    Get PDF
    This study investigated the phonological processing skills of 29 children with prelingual, profound hearing loss with 4 years of cochlear implant experience. Results were group matched with regard to word-reading ability and mother’s educational level with the performance of 29 hearing children. Results revealed that it is possible to obtain a valid measure of phonological processing (PP) skills in children using CIs. They could complete rhyming tasks and were able to complete sound-based tasks using standard test materials provided by a commercial test distributor. The CI children completed tasks measuring PP, but there were performance differences between the CI users and the hearing children. The process of learning phonological awareness (PA) for the children with CIs was characterized by a longer, more protracted learning phase than their counterparts with hearing. Tests of phonological memory skills indicated that when the tasks were controlled for presentation method and response modality, there were no differences between the performance of children with CIs and their counterparts with hearing. Tests of rapid naming revealed that there were no differences between rapid letter and number naming between the two groups. Results yielded a possible PP test battery for children with CI experience

    Temperature dependence of UV absorption cross sections and atmospheric implications of several alkyl iodides

    Get PDF
    The ultraviolet absorption spectra of a number of alkyl iodides which have been found in the troposphere, CH_3I, C_2H_5I, CH_3CH_2CH_2I, CH_3CHICH_3, CH_2I_2, and CH2_ClI, have been measured over the wavelength range 200–380 nm and at temperatures between 298 and 210 K. The absorption spectra of the monoiodides C_H3I, C_2H_5I, CH_3CH_2CH_2I, and CH_3CHICH_3 are nearly identical in shape and magnitude and consist of single broad bands centered near 260 nm. The addition of a chlorine atom in CH_2ClI shifts its spectrum to longer wavelengths (σ_(max) at 270 nm). The spectrum of CH_2I_2 is further red‐shifted, reaching a maximum of 3.85×10^(−18) cm^2 molecule^(−1) at 288 nm and exhibiting strong absorption in the solar actinic region, λ>290 nm. Atmospheric photolysis rate constants, J values, have been calculated assuming quantum efficiencies of unity for different solar zenith angles as a function of altitude using the newly measured cross sections. Surface photolysis rate constants, calculated from the absorption cross sections measured at 298 K, range from 3×10^(−6) s^(−1) for CH)3I to 5×10^(−3) s^(−1) for CH)2I)2 at a solar zenith angle of 40°
    corecore