2,186 research outputs found

    Improved source of infrared radiation for spectroscopy

    Get PDF
    Radiation from a crimped V-groove in the electrically heated metallic element of a high-resolution infrared spectrometer is more intense than that from plane areas adjacent to the element. Radiation from the vee and the flat was compared by alternately focusing on the entrance slit of a spectrograph

    Study of interfacial conductivity Final report

    Get PDF
    Statistical theory of interfacial thermal conductivity and crystal growth under weightlessnes

    DRAFT : Task System and Item Architecture (TSIA)

    Full text link
    During its execution, a task is independent of all other tasks. For an application which executes in terms of tasks, the application definition can be free of the details of the execution. Many projects have demonstrated that a task system (TS) can provide such an application with a parallel, distributed, heterogeneous, adaptive, dynamic, real-time, interactive, reliable, secure or other execution. A task consists of items and thus the application is defined in terms of items. An item architecture (IA) can support arrays, routines and other structures of items, thus allowing for a structured application definition. Taking properties from many projects, the support can extend through to currying, application defined types, conditional items, streams and other definition elements. A task system and item architecture (TSIA) thus promises unprecedented levels of support for application execution and definition.Comment: vii+244 pages, including 126 figures of diagrams and code examples. Submitted to Springer Verlag. For further information see http://www.tsia.or

    Are gravitational waves from giant magnetar flares observable?

    Full text link
    Are giant flares in magnetars viable sources of gravitational radiation? Few theoretical studies have been concerned with this problem, with the small number using either highly idealized models or assuming a magnetic field orders of magnitude beyond what is supported by observations. We perform nonlinear general-relativistic magnetohydrodynamics simulations of large-scale hydromagnetic instabilities in magnetar models. We utilise these models to find gravitational wave emissions over a wide range of energies, from 10^40 to 10^47 erg. This allows us to derive a systematic relationship between the surface field strength and the gravitational wave strain, which we find to be highly nonlinear. In particular, for typical magnetar fields of a few times 10^15 G, we conclude that a direct observation of f-modes excited by global magnetic field reconfigurations is unlikely with present or near-future gravitational wave observatories, though we also discuss the possibility that modes in a low-frequency band up to 100 Hz could be sufficiently excited to be relevant for observation.Comment: 4 pages, 3 figures. Further information can be found at http://www.physik.uni-tuebingen.de/institute/astronomie-astrophysik/institut/theoretische-astrophysik/forschung.htm

    Particle rearrangements during transitions between local minima of the potential energy landscape of a supercooled Lennard-Jones liquid

    Full text link
    The potential energy landscape (PEL) of supercooled binary Lennard-Jones (BLJ) mixtures exhibits local minima, or inherent structures (IS), which are organized into meta-basins (MB). We study the particle rearrangements related to transitions between both successive IS and successive MB for a small 80:20 BLJ system near the mode-coupling temperature T_MCT. The analysis includes the displacements of individual particles, the localization of the rearrangements and the relevance of string-like motion. We find that the particle rearrangements during IS and MB transitions do not change significantly at T_MCT. Further, it is demonstrated that IS and MB dynamics are spatially heterogeneous and facilitated by string-like motion. To investigate the mechanism of string-like motion, we follow the particle rearrangements during suitable sequences of IS transitions. We find that most strings observed after a series of transitions do not move coherently during a single transition, but subunits of different sizes are active at different times. Several findings suggest that the occurrence of a successful string enables the system to exit a MB. Moreover, we show that the particle rearrangements during two consecutive MB transitions are basically uncorrelated. Specifically, different groups of particles are highly mobile during subsequent MB transitions. Finally, the relation between the features of the PEL and the relaxation processes in supercooled liquids is discussed.Comment: 13 pages, 10 figure

    Photosynthetic performance of Xanthoria mawsonii C. W. Dodge in coastal habitats, Ross Sea region, continental Antarctica

    Get PDF
    Xanthoria mawsonii C. W. Dodge was found to perform well physiologically in a variety of habitats at high latitudes in continental Antarctica. The net photosynthetic rate of 7•5 μ mol CO2 kg−1 s−1 is exceptionally high for Antarctic lichens. Field and laboratory measurements proved the photosynthetic apparatus to be highly adapted to strong irradiance. The cold resistance of the photosystem II reaction centres is higher than the photosynthetic CO2 fixation process. Optimum temperature for net photosynthesis was c. 10°C. The lichen grows along water channels where it is frequently inundated and hydrated to maximum water content, although net photosynthesis is strongly depressed by super saturation. In these habitats the lichen is photosynthetically active for long periods of time. Xanthoria mawsonii also grows at sites where it depends entirely on the early spring snow melt and occasional snow fall for moisture. It has an exceptionally short reactivation phase and is able to utilize snow immediately. Recovery of activity by absorbing water vapour from air, though practically possible, seems to be of ecological importance only under snow at subzero temperatures
    corecore