1,044 research outputs found

    Approaches to inform redevelopment of brownfield sites: an example from the Leeds area of the West Yorkshire coalfield, UK

    Get PDF
    Government-led regeneration schemes and policies encouraging the use of brownfield land present a challenge, particularly in coalfield areas. Coalfields have typically experienced multiple phases of development and can be susceptible to a suite of problematic ground conditions that may be rooted in the near-surface geology or result from anthropogenic activity. Such problems, related to the nature of void backfill, undermined and unstable ground and the presence of contaminated land in the near-surface, may deter investment in the very areas earmarked for redevelopment. An understanding of previous developments within coalfields is required to identify potential geological hazards, so that regeneration proposals include measures that address these issues. Public records of landfill and site investigations, and minerals exploration including opencast mine plans can reveal the distribution, thickness and high-level descriptions of fill materials, although the coverage of data typically precludes a comprehensive analysis of entire cities. The best way to show the spatial distribution of fill materials is currently as a two dimensional national/regional scale dataset. Depending on the distribution of data points, however, 3D modelling can be possible, which is much more detailed and accurate. Focusing on the heavily urbanised county of West Yorkshire in northern England, the assessment of opencast coal mining on the landscape and benefits of quantifying the impact are discussed. We demonstrate how certain types of publicly available data allow a greater understanding of the interaction between human activity and natural superficial and bedrock geology. If successful, this approach can help lessen the impact of delays and increased financial costs caused by unforeseen ground conditions

    Radiocarbon evidence for the stability of polar ocean overturning during the Holocene

    Get PDF
    Funding: T.C. acknowledges support from the Strategic Priority Research Program of Chinese Academy of Sciences (XDB40010200), Fundamental Research Funds for the Central Universities (020614380116) and National Natural Science Foundation of China (41991325, 41822603 and 42021001). L.F.R. acknowledges support from the Natural Environment Research Council (NE/S001743/1, NE/R005117/1, NE/N003861/1 and NE/X00127X/1).Proxy-based studies have linked the pre-industrial atmospheric pCO2 rise of ∼20 ppmv in the mid- to late Holocene to an inferred increase in the Southern Ocean overturning and associated biogeochemical changes. However, the history of polar ocean overturning and ventilation through the Holocene remains poorly constrained, leaving important gaps in the assessment of the feedbacks between changes in ocean circulation and the carbon cycle in a warm climate state. The deep-ocean radiocarbon content, which provides a measure of ventilation, responds to circulation changes on centennial to millennial time scales. Here we present absolutely dated deep-sea coral radiocarbon records from the Drake Passage, between South America and Antarctica, and Reykjanes Ridge, south of Iceland, over the Holocene. Our data suggest that ventilation in the Antarctic circumpolar waters and North Atlantic Deep Water is surprisingly invariant within proxy uncertainties at our sampling resolution. Our findings indicate that long-term, large-scale polar ocean overturning has not been disturbed to a level resolvable by radiocarbon and is probably not responsible for the millennial atmosphere pCO2 evolution through the Holocene. Instead, continuous nutrient and carbon redistribution within the water column following deglaciation, as well as changes in land organic carbon stock, might have regulated atmospheric CO2 budget during this period.Publisher PDFPeer reviewe

    A fast radio burst with a low dispersion measure

    Get PDF
    Fast radio bursts (FRBs) are millisecond pulses of radio emission of seemingly extragalactic origin. More than 50 FRBs have now been detected, with only one seen to repeat. Here we present a new FRB discovery, FRB 110214, which was detected in the high latitude portion of the High Time Resolution Universe South survey at the Parkes telescope. FRB 110214 has one of the lowest dispersion measures of any known FRB (DM = 168.9±\pm0.5 pc cm3^{-3}), and was detected in two beams of the Parkes multi-beam receiver. A triangulation of the burst origin on the sky identified three possible regions in the beam pattern where it may have originated, all in sidelobes of the primary detection beam. Depending on the true location of the burst the intrinsic fluence is estimated to fall in the range of 50 -- 2000 Jy ms, making FRB 110214 one of the highest-fluence FRBs detected with the Parkes telescope. No repeating pulses were seen in almost 100 hours of follow-up observations with the Parkes telescope down to a limiting fluence of 0.3 Jy ms for a 2-ms pulse. Similar low-DM, ultra-bright FRBs may be detected in telescope sidelobes in the future, making careful modeling of multi-beam instrument beam patterns of utmost importance for upcoming FRB surveys.Comment: 8 pages, 3 figures, accepted for publication in MNRA

    Comparative study of density functional theories of the exchange-correlation hole and energy in silicon

    Full text link
    We present a detailed study of the exchange-correlation hole and exchange-correlation energy per particle in the Si crystal as calculated by the Variational Monte Carlo method and predicted by various density functional models. Nonlocal density averaging methods prove to be successful in correcting severe errors in the local density approximation (LDA) at low densities where the density changes dramatically over the correlation length of the LDA hole, but fail to provide systematic improvements at higher densities where the effects of density inhomogeneity are more subtle. Exchange and correlation considered separately show a sensitivity to the nonlocal semiconductor crystal environment, particularly within the Si bond, which is not predicted by the nonlocal approaches based on density averaging. The exchange hole is well described by a bonding orbital picture, while the correlation hole has a significant component due to the polarization of the nearby bonds, which partially screens out the anisotropy in the exchange hole.Comment: 16 pages, 5 figures, RevTeX, added conten

    A deficit of high-redshift, high-luminosity X-ray clusters: Evidence for a high value of Ωm?

    Get PDF
    From the Press-Schechter mass function and the empirical X-ray cluster luminosity-temperature (L-T) relation, we construct an X-ray cluster luminosity function that can be applied to the growing number of high-redshift, X-ray cluster luminosity catalogs to constrain cosmological parameters. In this paper, we apply this luminosity function to the Einstein Medium Sensitivity Survey (EMSS) and the ROSAT Brightest Cluster Sample (BCS) luminosity function to constrain the value of Ωm. In the case of the EMSS, we find a factor of 4-5 fewer X-ray clusters at redshifts above z = 0.4 than below this redshift at luminosities above LX = 7 × 1044 ergs s-1 (0.3-3.5 keV), which suggests that the X-ray cluster luminosity function has evolved above L(Black star). At lower luminosities, this luminosity function evolves only minimally, if at all. Using Bayesian inference, we find that the degree of evolution at high luminosities suggests that Ωm = 0.96+0.36-0.32, given the best-fit L-T relation of Reichart, Castander, & Nichol. When we account for the uncertainty in how the empirical L-T relation evolves with redshift, we find that Ωm ≈ 1.0 ± 0.4. However, it is unclear to what degree systematic effects may affect this and similarly obtained results

    Two-dimensional limit of exchange-correlation energy functional approximations in density functional theory

    Full text link
    We investigate the behavior of three-dimensional (3D) exchange-correlation energy functional approximations of density functional theory in anisotropic systems with two-dimensional (2D) character. Using two simple models, quasi-2D electron gas and two-electron quantum dot, we show a {\it fundamental limitation} of the local density approximation (LDA), and its semi-local extensions, generalized gradient approximation (GGA) and meta-GGA (MGGA), the most widely used forms of which are worse than the LDA in the strong 2D limit. The origin of these shortcomings is in the inability of the local (LDA) and semi-local (GGA/MGGA) approximations to describe systems with 2D character in which the nature of the exchange-correlation hole is very nonlocal. Nonlocal functionals provide an alternative approach, and explicitly the average density approximation (ADA) is shown to be remarkably accurate for the quasi-2D electron gas system. Our study is not only relevant for understanding of the functionals but also practical applications to semiconductor quantum structures and materials such as graphite and metal surfaces. We also comment on the implication of our findings to the practical device simulations based on the (semi-)local density functional method.Comment: 21 pages including 9 figures, to be published in Phys. Rev.

    A 100-Year Review: A century of change in temperate grazing dairy systems

    Get PDF
    peer-reviewedFrom 1917 to 2017, dairy grazing systems have evolved from uncontrolled grazing of unimproved pastures by dual-purpose dairy-beef breeds to an intensive system with a high output per unit of land from a fit-for-purpose cow. The end of World War I signaled significant government investments in agricultural research institutes around the world, which coincided with technological breakthroughs in milk harvesting and a recognition that important traits in both plants and animals could be improved upon relatively rapidly through genetic selection. Uptake of milk recording and herd testing increased rapidly through the 1920s, as did the recognition that pastures that were rested in between grazing events yielded more in a year than those continuously grazed. This, and the invention and refinement of the electric fence, led to the development of “controlled” rotational grazing. This, in itself, facilitated greater stocking rates and a 5 to 10% increase in milk output per hectare but, perhaps more importantly, it allowed a more efficient use of nitrogen fertilizer, further increasing milk output/land area by 20%. Farmer inventions led to the development of the herringbone and rotary milking parlors, which, along with the “unshortable” electric fence and technological breakthroughs in sperm dilution rates, allowed further dairy farm expansion. Simple but effective technological breakthroughs in reproduction ensured that cows were identified in estrus early (a key factor in maintaining the seasonality of milk production) and enabled researchers to quantify the anestrus problem in grazing herds. Genetic improvement of pasture species has lagged its bovine counterpart, but recent developments in multi-trait indices as well as investment in genetic technologies should significantly increase potential milk production per hectare. Decades of research on the use of feeds other than pasture (i.e., supplementary feeds) have provided consistent milk production responses when the reduction in pasture intake associated with the provision of supplementary feed (i.e., substitution rate) is accounted for. A unique feature of grazing systems research over the last 70 yr has been the use of multi-year farm systems experimentation. These studies have allowed the evaluation of strategic changes to a component of the system on all the interacting features of the system. This technique has allowed excellent component research to be “systemized” and is an essential part of the development of the intensive grazing production system that exists today. Future challenges include the provision of skilled labor or specifically designed automation to optimize farm management and both environmental sustainability and animal welfare concerns, particularly relating to the concentration of nitrogen in each urine patch and the associated risk of nitrate leaching, as well as concerns regarding exposure of animals to harsh climatic conditions. These combined challenges could affect farmers' “social license” to farm in the future

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag
    corecore