9 research outputs found

    Ecological Drought: Accounting for the Non-Human Impacts of Water Shortage in the Upper Missouri Headwaters Basin, Montana, USA

    Get PDF
    Water laws and drought plans are used to prioritize and allocate scarce water resources. Both have historically been human-centric, failing to account for non-human water needs. In this paper, we examine the development of instream flow legislation and the evolution of drought planning to highlight the growing concern for the non-human impacts of water scarcity. Utilizing a new framework for ecological drought, we analyzed five watershed-scale drought plans in southwestern Montana, USA to understand if, and how, the ecological impacts of drought are currently being assessed. We found that while these plans do account for some ecological impacts, it is primarily through the narrow lens of impacts to fish as measured by water temperature and streamflow. The latter is typically based on the same ecological principles used to determine instream flow requirements. We also found that other resource plans in the same watersheds (e.g., Watershed Restoration Plans, Bureau of Land Management (BLM) Watershed Assessments or United States Forest Service (USFS) Forest Plans) identify a broader range of ecological drought risks. Given limited resources and the potential for mutual benefits and synergies, we suggest greater integration between various planning processes could result in a more holistic consideration of water needs and uses across the landscape

    A typology of drought decision making: Synthesizing across cases to understand drought preparedness and response actions

    Get PDF
    Drought is an inescapable reality in many regions, including much of the western United States. With climate change, droughts are predicted to intensify and occur more frequently, making the imperative for drought management even greater. Many diverse actors – including private landowners, business owners, scientists, non-governmental organizations (NGOs), and managers and policymakers within tribal, local, state, and federal government agencies – play multiple, often overlapping roles in preparing for and responding to drought. Managing water is, of course, one of the most important roles that humans play in both mitigating and responding to droughts; but, focusing only on “water managers” or “water management” fails to capture key elements related to the broader category of drought management. The respective roles played by those managing drought (as distinct from water managers), the interactions among them, and the consequences in particular contexts, are not well understood. Our team synthesized insights from 10 in-depth case studies to understand key facets of decision making about drought preparedness and response. We present a typology with four elements that collectively describe how decisions about drought preparedness and response are made (context and objective for a decision; actors responsible; choice being made or action taken; and how decisions interact with and influence other decisions). The typology provides a framework for system-level understanding of how and by whom complex decisions about drought management are made. Greater system-level understanding helps decision makers, program and research funders, and scientists to identify constraints to and opportunities for action, to learn from the past, and to integrate ecological impacts, thereby facilitating social learning among diverse participants in drought preparedness and response

    Ecological Drought: Accounting for the Non-Human Impacts of Water Shortage in the Upper Missouri Headwaters Basin, Montana, USA

    Get PDF
    Water laws and drought plans are used to prioritize and allocate scarce water resources. Both have historically been human-centric, failing to account for non-human water needs. In this paper, we examine the development of instream flow legislation and the evolution of drought planning to highlight the growing concern for the non-human impacts of water scarcity. Utilizing a new framework for ecological drought, we analyzed five watershed-scale drought plans in southwestern Montana, USA to understand if, and how, the ecological impacts of drought are currently being assessed. We found that while these plans do account for some ecological impacts, it is primarily through the narrow lens of impacts to fish as measured by water temperature and streamflow. The latter is typically based on the same ecological principles used to determine instream flow requirements. We also found that other resource plans in the same watersheds (e.g., Watershed Restoration Plans, Bureau of Land Management (BLM) Watershed Assessments or United States Forest Service (USFS) Forest Plans) identify a broader range of ecological drought risks. Given limited resources and the potential for mutual benefits and synergies, we suggest greater integration between various planning processes could result in a more holistic consideration of water needs and uses across the landscape

    An integrated framework for examining groundwater vulnerability in the Mekong River Delta region.

    No full text
    The Mekong River provides water, food security, and many other valuable benefits to the more than 60 million Southeast Asian residents living within its basin. However, the Mekong River Basin is increasingly stressed by changes in climate, land cover, and infrastructure. These changes can affect water quantity and quality and exacerbate related hazards such as land subsidence and saltwater intrusion, resulting in multiple compounding risks for neighboring communities. In this study, we demonstrate the connection between climate change, groundwater availability, and social vulnerability by linking the results of a numerical groundwater model to land cover and socioeconomic data at the Cambodia-Vietnam border in the Mekong River Delta region. We simulated changes in groundwater availability across 20 years and identified areas of potential water stress based on domestic and agriculture-related freshwater demands. We then assessed adaptive capacity to understand how communities may be able to respond to this stress to better understand the growing risk of groundwater scarcity driven by climate change and overextraction. This study offers a novel approach for assessing risk of groundwater scarcity by linking the effects of climate change to the socioeconomic context in which they occur. Increasing our understanding of how changes in groundwater availability may affect local populations can help water managers better plan for the future, leading to more resilient communities

    Ecological Drought: Accounting for the Non-Human Impacts of Water Shortage in the Upper Missouri Headwaters Basin, Montana, USA

    No full text
    Water laws and drought plans are used to prioritize and allocate scarce water resources. Both have historically been human-centric, failing to account for non-human water needs. In this paper, we examine the development of instream flow legislation and the evolution of drought planning to highlight the growing concern for the non-human impacts of water scarcity. Utilizing a new framework for ecological drought, we analyzed five watershed-scale drought plans in southwestern Montana, USA to understand if, and how, the ecological impacts of drought are currently being assessed. We found that while these plans do account for some ecological impacts, it is primarily through the narrow lens of impacts to fish as measured by water temperature and streamflow. The latter is typically based on the same ecological principles used to determine instream flow requirements. We also found that other resource plans in the same watersheds (e.g., Watershed Restoration Plans, Bureau of Land Management (BLM) Watershed Assessments or United States Forest Service (USFS) Forest Plans) identify a broader range of ecological drought risks. Given limited resources and the potential for mutual benefits and synergies, we suggest greater integration between various planning processes could result in a more holistic consideration of water needs and uses across the landscape

    The Hurricane-Flood-Landslide Continuum

    No full text
    In August 2004, representatives from NOAA, NASA, the USGS, and other government agencies convened in San Juan, Puerto Rim for a workshop to discuss a proposed research project called the Hurricane-Flood-Landslide Continuum (HFLC). The essence of the HFLC is to develop and integrate tools across disciplines to enable the issuance of regional guidance products for floods and landslides associated with major tropical rain systems, with sufficient lead time that local emergency managers can protect vulnerable populations and infrastructure. All three lead agencies are independently developing precipitation-flood-debris flow forecasting technologies, and all have a history of work on natural hazards both domestically and overseas. NOM has the capability to provide tracking and prediction of storm rainfall, trajectory and landfall and is developing flood probability and magnTtude capabilities. The USGS has the capability to evaluate the ambient stability of natural and man-made landforms, to assess landslide susceptibilities for those landforms, and to establish probabilities for initiation of landslides and debris flows. Additionally, the USGS has well-developed operational capacity for real-time monitoring and reporting of streamflow across distributed networks of automated gaging stations (http://water.usgs.gov/waterwatch/). NASA has the capability to provide sophisticated algorithms for satellite remote sensing of precipitation, land use, and in the future, soil moisture. The Workshop sought to initiate discussion among three agencies regarding their specific and highly complimentary capabilities. The fundamental goal of the Workshop was to establish a framework that will leverage the strengths of each agency. Once a prototype system is developed for example, in relatively data-rich Puerto Rim, it could be adapted for use in data-poor, low-infrastructure regions such as the Dominican Republic or Haiti. This paper provides an overview of the Workshop s goals, presentations and recommendations with respect to the development of the HFLC
    corecore