820 research outputs found

    Spectra of ultrabroadband squeezed pulses and the finite-time Unruh-Davies effect

    Full text link
    We study spectral properties of quantum radiation of ultimately short duration. In particular, we introduce a continuous multimode squeezing operator for the description of subcycle pulses of entangled photons generated by a coherent-field driving in a thin nonlinear crystal with second order susceptibility. We find the ultrabroadband spectra of the emitted quantum radiation perturbatively in the strength of the driving field. These spectra can be related to the spectra expected in an Unruh-Davies experiment with a finite time of acceleration. In the time domain, we describe the corresponding behavior of the normally ordered electric field variance.Comment: 11 pages, 5 figure

    Circuit theory for decoherence in superconducting charge qubits

    Full text link
    Based on a network graph analysis of the underlying circuit, a quantum theory of arbitrary superconducting charge qubits is derived. Describing the dissipative elements of the circuit with a Caldeira-Leggett model, we calculate the decoherence and leakage rates of a charge qubit. The analysis includes decoherence due to a dissipative circuit element such as a voltage source or the quasiparticle resistances of the Josephson junctions in the circuit. The theory presented here is dual to the quantum circuit theory for superconducting flux qubits. In contrast to spin-boson models, the full Hilbert space structure of the qubit and its coupling to the dissipative environment is taken into account. Moreover, both self and mutual inductances of the circuit are fully included.Comment: 8 pages, 3 figures; v2: published version; typo in Eq.(30) corrected, minor changes, reference adde

    Elastic properties of thin h-BN films investigated by Brillouin light scattering

    Get PDF
    Hexagonal BN films have been deposited by rf-magnetron sputtering with simultaneous ion plating. The elastic properties of the films grown on silicon substrates under identical coating conditions have been de-termined by Brillouin light scattering from thermally excited surface phonons. Four of the five independent elastic constants of the deposited material are found to be c11 = 65 GPa, c13 = 7 GPa, c33 = 92 GPa and c44 = 53 GPa exhibiting an elastic anisotropy c11/c33 of 0.7. The Young's modulus determined with load indenta-tion is distinctly larger than the corresponding value taken from Brillouin light scattering. This discrepancy is attributed to the specific morphology of the material with nanocrystallites embedded in an amorphous matrix

    Mathematical programs with a two-dimensional reverse convex constraint

    Get PDF
    We consider the problem min{f(χ) : χ ∈ G, T(χ) ∉ int D}, where f is a lower semicontinuous function, G a compact, nonempty set in IRn, D a closed convex set in JR² with nonempty interior, and T a continuous mapping from IRn to IR². The constraint T(χ) ∉. int D is areverse convex constraint, so the feasible domain may be disconnected even when f, T are affine and G is a polytope. We show that this problem can be reduced to a quasiconcave minimization problem over a compact convex set in IR², and hence can be solved effectively provided f, T are convex and G is convex or discrete. In particular, we discuss areverse convex constraint of the form (c, χ) . (d, χ) ≤ 1. We also compare the approach in this paper with the parametric approach

    Entanglement transfer from electron spins to photons in spin light-emitting diodes containing quantum dots

    Full text link
    We show that electron recombination using positively charged excitons in single quantum dots provides an efficient method to transfer entanglement from electron spins onto photon polarizations. We propose a scheme for the production of entangled four-photon states of GHZ type. From the GHZ state, two fully entangled photons can be obtained by a measurement of two photons in the linear polarization basis, even for quantum dots with observable fine structure splitting for neutral excitons and significant exciton spin decoherence. Because of the interplay of quantum mechanical selection rules and interference, maximally entangled electron pairs are converted into maximally entangled photon pairs with unity fidelity for a continuous set of observation directions. We describe the dynamics of the conversion process using a master-equation approach and show that the implementation of our scheme is feasible with current experimental techniques.Comment: 5 pages, 2 figures. v2: Extended scheme, revised version. v3: Minor additions and extended title, published versio

    Dephasing of coupled spin qubit system during gate operations due to background charge fluctuations

    Full text link
    It has been proposed that a quantum computer can be constructed based on electron spins in quantum dots or based on a superconducting nanocircuit. During two-qubit operations, the fluctuation of the coupling parameters is a critical factor. One source of such fluctuation is the stirring of the background charges. We focused on the influence of this fluctuation on a coupled spin qubit system. The induced fluctuation in exchange coupling changes the amount of entanglement, fidelity, and purity. In our previous study, the background charge fluctuations were found to be an important channel of dephasing for a single Josephson qubit.Comment: 10 pages, 7 figure. to be publishe

    The associations between bariatric surgery and hip or knee arthroplasty, and hip or knee osteoarthritis: Propensity score-matched cohort studies.

    Get PDF
    To investigate the associations between bariatric surgery and hip or knee arthroplasty, and secondary care hip or knee osteoarthritis (OA). We performed cohort studies using data from Swedish nationwide healthcare registries. Patients aged 18-79 years who underwent bariatric surgery between 2006 and 2019 were matched on their propensity score (PS) to up to 2 obese patients ("unexposed episodes") in risk-set sampling. After a 1-year run-in period, episodes were followed in an "as-treated" approach. Using Cox proportional hazard regression, we calculated hazard ratios (HR) with 95% confidence intervals (CIs) of hip or knee arthroplasty overall and in subgroups of age, sex, joint location, arthroplasty type, bariatric surgery type, and by duration of follow-up if proportional hazard assumptions were violated. In a secondary cohort, we assessed the outcome incident secondary care hip or knee osteoarthritis (OA). Among 39'392 bariatric surgery episodes when compared to 61'085 ​PS-matched unexposed episodes (47'594 unique patients), the risk of hip or knee arthroplasty was strongest increased within the first three years of follow-up (HR 1.79, 95% CI 1.56-2.07), decreased thereafter, but remained elevated throughout follow-up. In a secondary cohort of 37'929 exposed when compared to 58'600 ​PS-matched unexposed episodes, the risk of hip or knee osteoarthritis was decreased (HR 0.84, 95% CI 0.79-0.90). Bariatric surgery is associated with increased risks of hip or knee arthroplasty, but also with decreased risks of secondary care OA. This contradiction supports the hypothesis that bariatric surgery may act as an enabler for hip or knee arthroplasty

    Electronic Structure of Multiple Dots

    Full text link
    We calculate, via spin density functional theory (SDFT) and exact diagonalization, the eigenstates for electrons in a variety of external potentials, including double and triple dots. The SDFT calculations employ realistic wafer profiles and gate geometries and also serve as the basis for the exact diagonalization calculations. The exchange interaction J between electrons is the difference between singlet and triplet ground state energies and reflects competition between tunneling and the exchange matrix element, both of which result from overlap in the barrier. For double dots, a characteristic transition from singlet ground state to triplet ground state (positive to negative J) is calculated. For the triple dot geometry with 2 electrons we also find the electronic structure with exact diagonalization. For larger electron number (18 and 20) we use only SDFT. In contrast to the double dot case, the triple dot case shows a quasi-periodic fluctuation of J with magnetic field which we attribute to periodic variations of the basis states in response to changing flux quanta threading the triple dot structure.Comment: 3 pages, 4 figure

    Energy spectrum and Landau levels in bilayer graphene with spin-orbit interaction

    Get PDF
    We present a theoretical study of the bandstructure and Landau levels in bilayer graphene at low energies in the presence of a transverse magnetic field and Rashba spin-orbit interaction in the regime of negligible trigonal distortion. Within an effective low energy approach (L\"owdin partitioning theory) we derive an effective Hamiltonian for bilayer graphene that incorporates the influence of the Zeeman effect, the Rashba spin-orbit interaction, and inclusively, the role of the intrinsic spin-orbit interaction on the same footing. Particular attention is spent to the energy spectrum and Landau levels. Our modeling unveil the strong influence of the Rashba coupling λR\lambda_R in the spin-splitting of the electron and hole bands. Graphene bilayers with weak Rashba spin-orbit interaction show a spin-splitting linear in momentum and proportional to λR\lambda_R , but scales inversely proportional to the interlayer hopping energy γ1\gamma_1. However, at robust spin-orbit coupling λR\lambda_R the energy spectrum shows a strong warping behavior near the Dirac points. We find the bias-induced gap in bilayer graphene to be decreasing with increasing Rashba coupling, a behavior resembling a topological insulator transition. We further predict an unexpected assymetric spin-splitting and crossings of the Landau levels due to the interplay between the Rashba interaction and the external bias voltage. Our results are of relevance for interpreting magnetotransport and infrared cyclotron resonance measurements, including also situations of comparatively weak spin-orbit coupling.Comment: 25 pages, 5 figure

    Electromagnetically induced transparency in superconducting quantum circuits : Effects of decoherence, tunneling and multi-level cross-talk

    Full text link
    We explore theoretically electromagnetically-induced transparency (EIT) in a superconducting quantum circuit (SQC). The system is a persistent-current flux qubit biased in a Λ\Lambda configuration. Previously [Phys. Rev. Lett. 93, 087003 (2004)], we showed that an ideally-prepared EIT system provides a sensitive means to probe decoherence. Here, we extend this work by exploring the effects of imperfect dark-state preparation and specific decoherence mechanisms (population loss via tunneling, pure dephasing, and incoherent population exchange). We find an initial, rapid population loss from the Λ\Lambda system for an imperfectly prepared dark state. This is followed by a slower population loss due to both the detuning of the microwave fields from the EIT resonance and the existing decoherence mechanisms. We find analytic expressions for the slow loss rate, with coefficients that depend on the particular decoherence mechanisms, thereby providing a means to probe, identify, and quantify various sources of decoherence with EIT. We go beyond the rotating wave approximation to consider how strong microwave fields can induce additional off-resonant transitions in the SQC, and we show how these effects can be mitigated by compensation of the resulting AC Stark shifts
    corecore